feat: Add programmatic cache management for long-running applications

Implements cache clearing functionality for SDK users who need manual
cache management in long-running applications where automatic cleanup
on process exit is not sufficient.

New Features:
- Added `clear()` method to CachePort protocol
- Implemented `clear()` in all cache adapters:
  * ContentAddressedCache: Clears files and SHA mappings
  * EncryptedCache: Clears encryption mappings and delegates to backend
  * MemoryCache: Already had clear() method
- Added `clear_cache()` method to DeltaGliderClient for public API

Cache Management API:
```python
from deltaglider import create_client

client = create_client()

# Upload files
client.put_object(Bucket='bucket', Key='file.zip', Body=data)

# Clear cache manually (important for long-running apps!)
client.clear_cache()
```

New Documentation:
- docs/CACHE_MANAGEMENT.md (684 lines)
  * Comprehensive guide for programmatic cache management
  * Long-running application strategies (web apps, services, batch jobs)
  * Encryption key management (ephemeral vs. persistent)
  * Key rotation procedures
  * Memory vs. filesystem cache trade-offs
  * Best practices by application type
  * Monitoring and troubleshooting

Key Topics Covered:
- Why SDK requires manual cache management (vs. CLI auto-cleanup)
- When to clear cache (periodic, config changes, tests, etc.)
- Cache strategies for 5 application types:
  * Long-running background services
  * Periodic batch jobs
  * Web applications / API servers
  * Testing / CI/CD
  * AWS Lambda / Serverless
- Encryption key management:
  * Ephemeral keys (default, maximum security)
  * Persistent keys (shared cache scenarios)
  * Key rotation procedures
  * Secure key storage (Secrets Manager)
- Memory vs. filesystem cache selection
- Monitoring cache health
- Troubleshooting common issues

Use Cases:
- Long-running services: Periodic cache clearing to prevent growth
- Batch jobs: Clear cache in finally block
- Tests: Clear cache after each test for clean state
- Multi-process: Shared cache with persistent encryption keys
- High performance: Memory cache with automatic LRU eviction

Security Enhancements:
- Documented encryption key lifecycle management
- Key rotation procedures
- Secure key storage best practices
- Ephemeral vs. persistent key trade-offs

Testing:
- All 119 tests passing 
- Type checking: 0 errors (mypy) 
- Linting: All checks passed (ruff) 

Breaking Changes: None (new API only)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Simone Scarduzio
2025-10-10 10:34:02 +02:00
parent 7a2ed16ee7
commit 47f022fffe
5 changed files with 825 additions and 0 deletions

684
docs/CACHE_MANAGEMENT.md Normal file
View File

@@ -0,0 +1,684 @@
# Cache Management for Long-Running Applications
## Overview
DeltaGlider uses caching to store reference files locally for efficient delta compression. However, unlike the CLI which automatically cleans up cache on exit, **programmatic SDK usage requires manual cache management** for long-running applications.
This guide explains how to manage cache in production applications, including:
- When and how to clear cache
- Encryption key management strategies
- Memory vs. filesystem cache trade-offs
- Best practices for different application types
## The Problem
**CLI (Automatic Cleanup)**:
```bash
# Cache created in /tmp/deltaglider-xyz123/
deltaglider cp file.zip s3://bucket/
# Process exits → Cache automatically deleted via atexit handler
# ✅ No manual cleanup needed
```
**SDK (Manual Cleanup Required)**:
```python
from deltaglider import create_client
client = create_client()
# Long-running application (runs for hours/days)
while True:
client.put_object(Bucket='releases', Key='file.zip', Body=data)
time.sleep(600) # Upload every 10 minutes
# ❌ Process never exits → Cache never cleaned
# ❌ Cache grows indefinitely
# ❌ Memory/disk exhaustion after days/weeks
```
## Solution: Manual Cache Management
### Basic Cache Clearing
```python
from deltaglider import create_client
client = create_client()
# Do some uploads
client.put_object(Bucket='releases', Key='file1.zip', Body=data1)
client.put_object(Bucket='releases', Key='file2.zip', Body=data2)
# Clear cache to free resources
client.clear_cache()
# ✅ All cached references removed
# ✅ Memory/disk freed
# ✅ Next upload will fetch fresh reference from S3
```
### When to Clear Cache
| Scenario | Frequency | Reason |
|----------|-----------|--------|
| **Long-running services** | Every 1-4 hours | Prevent memory/disk growth |
| **After config changes** | Immediately | Old cache is invalid |
| **High memory pressure** | As needed | Free resources |
| **Test cleanup** | After each test | Ensure clean state |
| **Scheduled jobs** | After job completes | Clean up before next run |
| **Key rotation** | After rotation | Old encrypted cache unusable |
## Cache Strategies by Application Type
### 1. Long-Running Background Service
**Scenario**: Continuous upload service running 24/7
```python
from deltaglider import create_client
import schedule
import time
import logging
logger = logging.getLogger(__name__)
client = create_client()
def upload_task():
"""Upload latest build."""
try:
with open('latest-build.zip', 'rb') as f:
response = client.put_object(
Bucket='releases',
Key=f'builds/{datetime.now().isoformat()}.zip',
Body=f
)
logger.info(f"Uploaded: {response['ETag']}")
except Exception as e:
logger.error(f"Upload failed: {e}")
def cleanup_task():
"""Clear cache to prevent growth."""
client.clear_cache()
logger.info("Cache cleared - freed resources")
# Upload every 10 minutes
schedule.every(10).minutes.do(upload_task)
# Clear cache every 2 hours (balance performance vs. memory)
schedule.every(2).hours.do(cleanup_task)
# Run indefinitely
while True:
schedule.run_pending()
time.sleep(60)
```
**Cache Clearing Frequency Guidelines**:
- Every 1 hour: High upload frequency (>100/day), memory-constrained
- Every 2-4 hours: Moderate upload frequency (10-100/day), normal memory
- Every 6-12 hours: Low upload frequency (<10/day), abundant memory
### 2. Periodic Batch Job
**Scenario**: Daily backup script
```python
from deltaglider import create_client
import glob
from pathlib import Path
def daily_backup():
"""Upload daily backups and clean up."""
client = create_client()
try:
# Upload all backup files
for backup in glob.glob('/backups/*.zip'):
with open(backup, 'rb') as f:
client.put_object(
Bucket='backups',
Key=f'daily/{Path(backup).name}',
Body=f
)
print(f"Backed up: {backup}")
finally:
# ALWAYS clear cache at end of job
client.clear_cache()
print("Cache cleared - job complete")
# Run daily via cron/systemd timer
if __name__ == '__main__':
daily_backup()
```
**Best Practice**: Always clear cache in `finally` block to ensure cleanup even if job fails.
### 3. Web Application / API Server
**Scenario**: Flask/FastAPI app with upload endpoints
```python
from fastapi import FastAPI, UploadFile, BackgroundTasks
from deltaglider import create_client
import asyncio
app = FastAPI()
# Create client once at startup
client = create_client()
async def periodic_cache_cleanup():
"""Background task to clear cache periodically."""
while True:
await asyncio.sleep(3600) # Every hour
client.clear_cache()
print("Cache cleared in background")
@app.on_event("startup")
async def startup_event():
"""Start background cache cleanup task."""
asyncio.create_task(periodic_cache_cleanup())
@app.post("/upload")
async def upload_file(file: UploadFile):
"""Upload endpoint with automatic cache management."""
content = await file.read()
response = client.put_object(
Bucket='uploads',
Key=f'files/{file.filename}',
Body=content
)
return {"message": "Uploaded", "etag": response['ETag']}
@app.post("/admin/clear-cache")
async def admin_clear_cache():
"""Manual cache clear endpoint for admin."""
client.clear_cache()
return {"message": "Cache cleared"}
```
**Best Practice**: Run periodic cache cleanup in background task, provide manual clear endpoint for emergencies.
### 4. Testing / CI/CD
**Scenario**: Test suite using DeltaGlider
```python
import pytest
from deltaglider import create_client
@pytest.fixture
def deltaglider_client():
"""Provide clean client for each test."""
client = create_client()
yield client
# ALWAYS clear cache after test
client.clear_cache()
def test_upload(deltaglider_client):
"""Test upload with automatic cleanup."""
response = deltaglider_client.put_object(
Bucket='test-bucket',
Key='test-file.zip',
Body=b'test data'
)
assert response['ETag'] is not None
# Cache automatically cleared by fixture
def test_download(deltaglider_client):
"""Test download with clean cache."""
# Cache is clean from previous test
deltaglider_client.put_object(Bucket='test', Key='file.zip', Body=b'data')
response = deltaglider_client.get_object(Bucket='test', Key='file.zip')
assert response['Body'].read() == b'data'
# Cache automatically cleared by fixture
```
**Best Practice**: Use pytest fixtures to ensure cache is cleared after each test.
### 5. AWS Lambda / Serverless
**Scenario**: Lambda function with warm container reuse
```python
import os
from deltaglider import create_client
# Initialize client outside handler (reused across invocations)
client = create_client()
# Track invocation count for cache clearing
invocation_count = 0
def lambda_handler(event, context):
"""Lambda handler with periodic cache clearing."""
global invocation_count
invocation_count += 1
try:
# Upload file
response = client.put_object(
Bucket='lambda-uploads',
Key=event['filename'],
Body=event['data']
)
# Clear cache every 50 invocations (warm container optimization)
if invocation_count % 50 == 0:
client.clear_cache()
print(f"Cache cleared after {invocation_count} invocations")
return {'statusCode': 200, 'etag': response['ETag']}
except Exception as e:
# Clear cache on error to prevent poisoned state
client.clear_cache()
return {'statusCode': 500, 'error': str(e)}
```
**Best Practice**: Clear cache periodically (every N invocations) and on errors. Lambda warm containers can reuse cache across invocations for performance.
## Encryption Key Management
DeltaGlider always encrypts cache data. Understanding key management is critical for programmatic usage.
### Ephemeral Keys (Default - Recommended)
**How It Works**:
- New encryption key generated per client instance
- Cache encrypted with instance-specific key
- Key lost when client is garbage collected
- **Maximum security** - keys never persist
**When to Use**:
- Single-process applications
- Short-lived scripts
- CI/CD pipelines
- Testing
- Maximum security requirements
**Example**:
```python
from deltaglider import create_client
# Create client (generates ephemeral key automatically)
client = create_client()
# Upload file (encrypted with ephemeral key)
client.put_object(Bucket='bucket', Key='file.zip', Body=data)
# Clear cache
client.clear_cache()
# ✅ Encrypted cache cleared
# ✅ Key was never persisted
# ✅ Perfect forward secrecy
```
**Characteristics**:
- ✅ Maximum security (keys never leave process)
- ✅ Perfect forward secrecy
- ✅ No key management overhead
- ❌ Cache not shareable between processes
- ❌ Cache not reusable after client recreation
### Persistent Keys (Advanced - Shared Cache)
**How It Works**:
- Use same encryption key across multiple processes/clients
- Key stored in environment variable or secrets manager
- All processes can read each other's encrypted cache
- **Trade-off**: Convenience vs. security
**When to Use**:
- Multi-process applications (workers, replicas)
- Shared cache across containers
- Cache persistence across application restarts
- Horizontal scaling scenarios
**Example - Environment Variable**:
```python
import os
from cryptography.fernet import Fernet
import base64
# Generate persistent key (do this ONCE, securely)
key = Fernet.generate_key()
key_b64 = base64.b64encode(key).decode('utf-8')
print(f"DG_CACHE_ENCRYPTION_KEY={key_b64}") # Store in secrets manager!
# Set in environment (or use secrets manager)
os.environ['DG_CACHE_ENCRYPTION_KEY'] = key_b64
# All client instances use same key
client1 = create_client()
client2 = create_client()
# Client1 writes to cache
client1.put_object(Bucket='bucket', Key='file.zip', Body=data)
# Client2 can read same cached data (same key!)
client2.get_object(Bucket='bucket', Key='file.zip')
# ✅ Cache shared between processes
# ⚠️ Key must be securely managed
```
**Example - AWS Secrets Manager**:
```python
import boto3
import json
from deltaglider import create_client
def get_encryption_key_from_secrets_manager():
"""Retrieve encryption key from AWS Secrets Manager."""
secrets = boto3.client('secretsmanager', region_name='us-west-2')
response = secrets.get_secret_value(SecretId='deltaglider/cache-encryption-key')
secret = json.loads(response['SecretString'])
return secret['encryption_key']
# Retrieve key securely
os.environ['DG_CACHE_ENCRYPTION_KEY'] = get_encryption_key_from_secrets_manager()
# Create client with persistent key
client = create_client()
```
**Security Best Practices for Persistent Keys**:
1. **Generate once**: Never regenerate unless rotating
2. **Store securely**: AWS Secrets Manager, HashiCorp Vault, etc.
3. **Rotate regularly**: Follow your key rotation policy
4. **Audit access**: Log who accesses encryption keys
5. **Principle of least privilege**: Only processes that need shared cache get the key
### Key Rotation
**When to Rotate**:
- Regular schedule (every 90 days recommended)
- After security incident
- When team members leave
- After key exposure
**How to Rotate**:
```python
import os
from deltaglider import create_client
# OLD KEY (existing cache encrypted with this)
old_key = os.environ.get('DG_CACHE_ENCRYPTION_KEY')
# Generate NEW KEY
from cryptography.fernet import Fernet
new_key = Fernet.generate_key()
new_key_b64 = base64.b64encode(new_key).decode('utf-8')
# Steps for rotation:
# 1. Clear old cache (encrypted with old key)
client_old = create_client() # Uses old key from env
client_old.clear_cache()
# 2. Update environment with new key
os.environ['DG_CACHE_ENCRYPTION_KEY'] = new_key_b64
# 3. Create new client with new key
client_new = create_client() # Uses new key
# 4. Continue operations
client_new.put_object(Bucket='bucket', Key='file.zip', Body=data)
# ✅ Cache now encrypted with new key
# ✅ Old encrypted cache cleared
```
## Memory vs. Filesystem Cache
### Filesystem Cache (Default)
**Characteristics**:
- Stored in `/tmp/deltaglider-*/`
- Persistent across client recreations (within same process)
- Can be shared between processes (with persistent encryption key)
- Slower than memory cache (disk I/O)
**Configuration**:
```python
import os
# Explicitly set filesystem cache (this is the default)
os.environ['DG_CACHE_BACKEND'] = 'filesystem'
from deltaglider import create_client
client = create_client()
```
**When to Use**:
- Default choice for most applications
- When cache should persist across client recreations
- Multi-process applications (with persistent key)
- Memory-constrained environments
**Cache Clearing**:
```python
client.clear_cache()
# Removes all files from /tmp/deltaglider-*/
# Frees disk space
```
### Memory Cache
**Characteristics**:
- Stored in process memory (RAM)
- Fast access (no disk I/O)
- Automatically freed when process exits
- LRU eviction prevents unlimited growth
- Not shared between processes
**Configuration**:
```python
import os
# Enable memory cache
os.environ['DG_CACHE_BACKEND'] = 'memory'
os.environ['DG_CACHE_MEMORY_SIZE_MB'] = '200' # Default: 100MB
from deltaglider import create_client
client = create_client()
```
**When to Use**:
- High-performance requirements
- Ephemeral environments (containers, Lambda)
- Short-lived applications
- CI/CD pipelines
- When disk I/O is bottleneck
**Cache Clearing**:
```python
client.clear_cache()
# Frees memory immediately
# No disk I/O
```
**LRU Eviction**:
Memory cache automatically evicts least recently used entries when size limit is reached. No manual intervention needed.
## Best Practices Summary
### ✅ DO
1. **Clear cache periodically** in long-running applications
2. **Clear cache in `finally` blocks** for batch jobs
3. **Use fixtures for tests** to ensure clean state
4. **Monitor cache size** in production
5. **Use ephemeral keys** when possible (maximum security)
6. **Store persistent keys securely** (Secrets Manager, Vault)
7. **Rotate encryption keys** regularly
8. **Use memory cache** for ephemeral environments
9. **Clear cache after config changes**
10. **Document cache strategy** for your application
### ❌ DON'T
1. **Never let cache grow unbounded** in long-running apps
2. **Don't share ephemeral encrypted cache** between processes
3. **Don't store persistent keys in code** or version control
4. **Don't forget to clear cache in tests**
5. **Don't assume cache is automatically cleaned** in SDK usage
6. **Don't use persistent keys** unless you need cross-process sharing
7. **Don't skip key rotation**
8. **Don't ignore memory limits** for memory cache
## Monitoring Cache Health
### Cache Size Tracking
```python
import os
from pathlib import Path
from deltaglider import create_client
def get_cache_size_mb(cache_dir: Path) -> float:
"""Calculate total cache size in MB."""
total_bytes = sum(f.stat().st_size for f in cache_dir.rglob('*') if f.is_file())
return total_bytes / (1024 * 1024)
# Get cache directory (ephemeral, changes per process)
cache_dir = Path(tempfile.gettempdir())
deltaglider_caches = list(cache_dir.glob('deltaglider-*'))
if deltaglider_caches:
cache_path = deltaglider_caches[0]
cache_size_mb = get_cache_size_mb(cache_path)
print(f"Cache size: {cache_size_mb:.2f} MB")
# Clear if over threshold
if cache_size_mb > 500:
client = create_client()
client.clear_cache()
print("Cache cleared - exceeded 500MB")
```
### Memory Cache Monitoring
```python
import os
os.environ['DG_CACHE_BACKEND'] = 'memory'
from deltaglider import create_client
client = create_client()
# Memory cache auto-evicts at configured limit
# Monitor via application memory usage tools (not direct API)
# Example with memory_profiler
from memory_profiler import profile
@profile
def upload_many_files():
for i in range(1000):
client.put_object(Bucket='test', Key=f'file{i}.zip', Body=b'data' * 1000)
# Check memory profile to see cache memory usage
upload_many_files()
```
## Troubleshooting
### Problem: Cache Growing Too Large
**Symptoms**:
- Disk space running out (`/tmp` filling up)
- High memory usage
**Solution**:
```python
# Implement automatic cache clearing
import psutil
client = create_client()
def smart_cache_clear():
"""Clear cache if memory/disk pressure detected."""
# Check disk space
disk = psutil.disk_usage('/tmp')
if disk.percent > 80:
client.clear_cache()
print("Cache cleared - disk pressure")
return
# Check memory usage
memory = psutil.virtual_memory()
if memory.percent > 80:
client.clear_cache()
print("Cache cleared - memory pressure")
# Call periodically
schedule.every(15).minutes.do(smart_cache_clear)
```
### Problem: Decryption Failures After Key Rotation
**Symptoms**:
- `CacheCorruptionError: Decryption failed`
- After rotating encryption keys
**Solution**:
```python
# Clear cache before using new key
old_client = create_client() # Old key
old_client.clear_cache()
# Update encryption key
os.environ['DG_CACHE_ENCRYPTION_KEY'] = new_key
# Create new client
new_client = create_client() # New key
```
### Problem: Tests Failing Due to Cached Data
**Symptoms**:
- Tests pass in isolation, fail when run together
- Unexpected data in downloads
**Solution**:
```python
# Always clear cache in test teardown
@pytest.fixture(autouse=True)
def clear_cache_after_test():
"""Automatically clear cache after every test."""
yield
# Teardown
client = create_client()
client.clear_cache()
```
## Related Documentation
- [docs/sdk/getting-started.md](sdk/getting-started.md) - SDK configuration
- [README.md](../README.md) - Docker and environment variables
- [CLAUDE.md](../CLAUDE.md) - Development guide
## Quick Reference
```python
from deltaglider import create_client
# Create client
client = create_client()
# Clear all cache
client.clear_cache()
# Use memory cache
os.environ['DG_CACHE_BACKEND'] = 'memory'
# Use persistent encryption key
os.environ['DG_CACHE_ENCRYPTION_KEY'] = 'base64-encoded-key'
```

View File

@@ -242,5 +242,29 @@ class ContentAddressedCache(CachePort):
# NOTE: We don't delete the actual CAS file because:
# - Other deltaspaces may reference the same SHA
def clear(self) -> None:
"""Clear all cached references.
Removes all cached files and mappings. This is a destructive operation
that forcibly removes the entire cache directory.
Use cases:
- Long-running applications that need to free disk space
- Manual cache invalidation
- Test cleanup
- Ensuring fresh data fetch after configuration changes
"""
import shutil
# Clear in-memory mapping
self._deltaspace_to_sha.clear()
# Remove all cache files (destructive!)
if self.base_dir.exists():
shutil.rmtree(self.base_dir, ignore_errors=True)
# Recreate base directory with secure permissions
self.base_dir.mkdir(parents=True, mode=0o700, exist_ok=True)
# - The ephemeral cache will be cleaned on process exit anyway
# - For persistent cache (future), we'd need reference counting

View File

@@ -281,3 +281,25 @@ class EncryptedCache(CachePort):
# Evict from backend
self.backend.evict(bucket, prefix)
def clear(self) -> None:
"""Clear all cached references and encryption mappings.
Removes all cached data and clears encryption key mappings.
This is the proper way to forcibly clean up cache in long-running
applications.
Use cases:
- Long-running applications needing to free resources
- Manual cache invalidation after key rotation
- Test cleanup
- Memory pressure situations
Note: After clearing, the cache will use a fresh encryption key
(ephemeral mode) or the same persistent key (if DG_CACHE_ENCRYPTION_KEY set).
"""
# Clear encryption mapping
self._plaintext_sha_map.clear()
# Delegate to backend to clear actual files/memory
self.backend.clear()

View File

@@ -1061,6 +1061,86 @@ class DeltaGliderClient:
tags[key] = value
return tags
# ============================================================================
# Cache Management APIs (DeltaGlider Extensions)
# ============================================================================
def clear_cache(self) -> None:
"""Clear all cached reference files.
Forcibly removes all cached data from memory or disk. This is essential for
long-running applications that need to:
- Free memory/disk space
- Invalidate cache after configuration changes
- Ensure fresh data fetch from S3
- Clean up after tests
**Important for Long-Running Applications**:
Unlike the CLI which cleans up cache on exit, programmatic SDK usage
requires manual cache management. Call this method periodically or when:
- Application runs for extended periods (hours/days)
- Memory usage is high
- Configuration changes (endpoint, credentials, encryption key)
- Testing scenarios requiring clean state
**Effects**:
- Filesystem cache: Removes all files from cache directory
- Memory cache: Clears all in-memory data
- Encrypted cache: Clears encryption key mappings
- Next upload will re-fetch reference from S3
**Example - Long-Running Service**:
```python
from deltaglider import create_client
import schedule
import time
client = create_client()
def upload_task():
client.put_object(Bucket='releases', Key='app.zip', Body=open('app.zip', 'rb'))
def cleanup_task():
client.clear_cache() # Free resources every hour
print("Cache cleared")
# Upload every 10 minutes
schedule.every(10).minutes.do(upload_task)
# Clear cache every hour
schedule.every().hour.do(cleanup_task)
while True:
schedule.run_pending()
time.sleep(1)
```
**Example - Test Cleanup**:
```python
def test_upload():
client = create_client()
try:
client.put_object(Bucket='test', Key='file.zip', Body=b'data')
finally:
client.clear_cache() # Ensure clean state for next test
```
**Example - After Configuration Change**:
```python
client = create_client(endpoint_url='http://minio1:9000')
client.put_object(Bucket='bucket', Key='file.zip', Body=b'data')
# Switch to different endpoint
client.clear_cache() # Clear cache from old endpoint
client = create_client(endpoint_url='http://minio2:9000')
```
See Also:
- `evict_cache()`: Remove specific cached reference
- docs/CACHE_MANAGEMENT.md: Complete cache management guide
"""
self.service.cache.clear()
def create_client(
endpoint_url: str | None = None,

View File

@@ -42,3 +42,18 @@ class CachePort(Protocol):
def evict(self, bucket: str, prefix: str) -> None:
"""Remove cached reference."""
...
def clear(self) -> None:
"""Clear all cached references.
This method forcibly removes all cached data, useful for:
- Long-running applications that need to free memory
- Test cleanup
- Manual cache invalidation
- Ensuring fresh data fetch
Note: For filesystem caches, this removes all files in the cache directory.
For memory caches, this clears all in-memory data.
For encrypted caches, this also clears encryption key mappings.
"""
...