mirror of
https://github.com/ysoftdevs/th.git
synced 2026-01-16 16:36:39 +01:00
158 lines
4.7 KiB
Plaintext
158 lines
4.7 KiB
Plaintext
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <sys/time.h>
|
|
#include <stdint.h>
|
|
#include <math.h>
|
|
|
|
|
|
#define MAX_PATH_LEN (32 * 1024)
|
|
#define MAX_KERNEL_RADIUS 16
|
|
|
|
struct kernel_params {
|
|
float kernel[MAX_KERNEL_RADIUS + 1];
|
|
int w;
|
|
int h;
|
|
};
|
|
|
|
static void error(const char * message) {
|
|
fprintf(stderr, "ERROR: %s\n", message);
|
|
exit(-1);
|
|
}
|
|
|
|
static void usage(const char * message, const char * app) {
|
|
fprintf(stderr, "Usage: %s width height sigma file1 ... fileN\n", app);
|
|
fprintf(stderr, "Example: %s 1920 1080 3 f1.gray f2.gray f3.gray\n", app);
|
|
error(message);
|
|
}
|
|
|
|
static double timer_ms() {
|
|
struct timeval tv;
|
|
gettimeofday(&tv, NULL);
|
|
return tv.tv_sec * 1000.0 + tv.tv_usec * 0.001;
|
|
}
|
|
|
|
static __device__ int saturate(int n, int max_value) {
|
|
return max(0, min(n, max_value - 1));
|
|
}
|
|
|
|
static __device__ int get_pix(const uint8_t * src, int w, int h, int x, int y) {
|
|
return (float)src[saturate(x, w) + saturate(y, h) * w];
|
|
}
|
|
|
|
template <int DX, int DY>
|
|
static __global__ void convolution(kernel_params p, uint8_t * src, uint8_t * dest) {
|
|
// coordinates of processed pixel
|
|
const int x = threadIdx.x + blockIdx.x * blockDim.x;
|
|
const int y = threadIdx.y + blockIdx.y * blockDim.y;
|
|
|
|
// stop if out of bounds
|
|
if(x >= p.w || y >= p.h) {
|
|
return;
|
|
}
|
|
|
|
// get weighted sum of neighbors
|
|
float result = p.kernel[0] * get_pix(src, p.w, p.h, x, y);
|
|
for(int k = 1; k <= MAX_KERNEL_RADIUS; k++) {
|
|
result += p.kernel[k] * (get_pix(src, p.w, p.h, x + k * DX, y + k * DY)
|
|
+ get_pix(src, p.w, p.h, x - k * DX, y - k * DY));
|
|
}
|
|
|
|
// save result
|
|
dest[x + y * p.w] = saturate((int)result, 256);
|
|
}
|
|
|
|
|
|
static float gaussian(float sigma, float x) {
|
|
const float e = x / sigma;
|
|
return exp(-0.5 * e * e);
|
|
}
|
|
|
|
int main(int argn, char ** argv) {
|
|
kernel_params params;
|
|
|
|
if(argn < 4) {
|
|
usage("Wrong argument count", *argv);
|
|
}
|
|
|
|
// read width and height
|
|
params.w = atoi(argv[1]);
|
|
params.h = atoi(argv[2]);
|
|
if(params.w < 1 || params.h < 1) {
|
|
usage("Both width and height must be positive integers", *argv);
|
|
}
|
|
const int pix_count = params.w * params.h;
|
|
|
|
// read sigma and prepare normalized kernel (sum = 1)
|
|
const float sigma = atof(argv[3]);
|
|
float kernel_sum = 0.0f;
|
|
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
|
|
kernel_sum += params.kernel[k] = gaussian(sigma, k);
|
|
}
|
|
kernel_sum = 2.0 * kernel_sum - params.kernel[0];
|
|
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
|
|
params.kernel[k] /= kernel_sum;
|
|
}
|
|
|
|
// dump the kernel
|
|
printf("Convolution kernel:");
|
|
for(int k = -MAX_KERNEL_RADIUS; k <= MAX_KERNEL_RADIUS; k++) {
|
|
printf(" %f", params.kernel[k < 0 ? -k : k]);
|
|
}
|
|
printf("\n");
|
|
|
|
// prepare buffers
|
|
uint8_t * const data_ptr = (uint8_t*)malloc(pix_count);
|
|
uint8_t * data_gpu_ptr;
|
|
uint8_t * temp_gpu_ptr;
|
|
cudaMalloc((void**)&data_gpu_ptr, pix_count);
|
|
cudaMalloc((void**)&temp_gpu_ptr, pix_count);
|
|
|
|
// measure time of processing of all images
|
|
const double begin = timer_ms();
|
|
for(int i = 4; i < argn; i++) {
|
|
// read input data
|
|
printf("Processing '%s'\n", argv[i]);
|
|
FILE * const src_file = fopen(argv[i], "rb");
|
|
if(NULL == src_file || 1 != fread(data_ptr, pix_count, 1, src_file)) {
|
|
error(argv[i]);
|
|
}
|
|
fclose(src_file);
|
|
|
|
// copy data to GPU memory
|
|
cudaMemcpy(data_gpu_ptr, data_ptr, pix_count, cudaMemcpyHostToDevice);
|
|
|
|
// launch vertical and horizontal pass
|
|
dim3 block(32, 32);
|
|
dim3 grid((params.w + block.x - 1) / block.x,
|
|
(params.h + block.y - 1) / block.y);
|
|
convolution<0, 1><<<grid, block>>>(params, data_gpu_ptr, temp_gpu_ptr);
|
|
convolution<1, 0><<<grid, block>>>(params, temp_gpu_ptr, data_gpu_ptr);
|
|
|
|
// copy data back from GPU
|
|
cudaMemcpy(data_ptr, data_gpu_ptr, pix_count, cudaMemcpyDeviceToHost);
|
|
|
|
// compose output filename
|
|
char out_path[MAX_PATH_LEN + 1];
|
|
snprintf(out_path, MAX_PATH_LEN, "%s.out.gray", argv[i]);
|
|
|
|
// write data to output file
|
|
FILE * const out_file = fopen(out_path, "wb");
|
|
if(NULL == out_file || 1 != fwrite(data_ptr, pix_count, 1, out_file)) {
|
|
error(out_path);
|
|
}
|
|
fclose(out_file);
|
|
}
|
|
const double end = timer_ms();
|
|
|
|
// print total time
|
|
printf("time: %f ms, %d images => %f ms/image\n",
|
|
end - begin, argn - 4, (end - begin) / (argn - 4));
|
|
|
|
// cleanup
|
|
free(data_ptr);
|
|
cudaFree(data_gpu_ptr);
|
|
cudaFree(temp_gpu_ptr);
|
|
return 0;
|
|
}
|
|
|