added TH with Comprimato

This commit is contained in:
Jakub Fojtl
2014-06-22 14:30:44 +02:00
parent 9c0cca8d1b
commit c7140abae8
10 changed files with 1415 additions and 0 deletions

View File

@@ -0,0 +1,13 @@
BINARIES = $(basename $(wildcard v*pu.c*))
all: $(BINARIES)
clean:
rm -f $(BINARIES)
%-cpu: %-cpu.c
gcc -std=c99 -pedantic -Wextra -O3 $< -lm -o $@
%-gpu: %-gpu.cu
nvcc -gencode arch=compute_30,code=sm_30 -O3 $< -o $@

View File

@@ -0,0 +1,138 @@
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <stdint.h>
#include <math.h>
#define MAX_PATH_LEN (32 * 1024)
#define MAX_KERNEL_RADIUS 16
static void error(const char * message) {
fprintf(stderr, "ERROR: %s\n", message);
exit(-1);
}
static void usage(const char * message, const char * app) {
fprintf(stderr, "Usage: %s width height sigma file1 ... fileN\n", app);
fprintf(stderr, "Example: %s 1920 1080 3 f1.gray f2.gray f3.gray\n", app);
error(message);
}
static double timer_ms() {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000.0 + tv.tv_usec * 0.001;
}
static int saturate(int n, int max) {
return n < 0 ? 0 : (n < max ? n : max - 1);
}
static int get_pix(const uint8_t * src, int w, int h, int x, int y) {
return src[saturate(x, w) + saturate(y, h) * w];
}
static float gaussian(float sigma, float x) {
const float e = x / sigma;
return exp(-0.5 * e * e);
}
int main(int argn, char ** argv) {
if(argn < 4) {
usage("Wrong argument count", *argv);
}
// read width and height
const int w = atoi(argv[1]);
const int h = atoi(argv[2]);
if(w < 1 || h < 1) {
usage("Both width and height must be positive integers", *argv);
}
const int pix_count = w * h;
// read sigma and prepare normalized kernel (sum = 1)
const float sigma = atof(argv[3]);
float kernel[MAX_KERNEL_RADIUS + 1];
float kernel_sum = 0.0f;
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
kernel_sum += kernel[k] = gaussian(sigma, k);
}
kernel_sum = 2.0 * kernel_sum - kernel[0];
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
kernel[k] /= kernel_sum;
}
// dump the kernel
printf("Convolution kernel:");
for(int k = -MAX_KERNEL_RADIUS; k <= MAX_KERNEL_RADIUS; k++) {
printf(" %f", kernel[k < 0 ? -k : k]);
}
printf("\n");
// prepare buffers
uint8_t * const data_ptr = (uint8_t*)malloc(pix_count);
uint8_t * const temp_ptr = (uint8_t*)malloc(pix_count);
// measure time of processing of all images
const double begin = timer_ms();
for(int i = 4; i < argn; i++) {
// read input data
printf("Processing '%s'\n", argv[i]);
FILE * const src_file = fopen(argv[i], "rb");
if(NULL == src_file || 1 != fread(data_ptr, pix_count, 1, src_file)) {
error(argv[i]);
}
fclose(src_file);
// vertical pass: for each pixel
uint8_t * out_pix_ptr = temp_ptr;
for(int y = 0; y < h; y++) {
for(int x = 0; x < w; x++) {
// sum up all weighted neighbors and the pixel itself
float result = kernel[0] * get_pix(data_ptr, w, h, x, y);
for(int k = 1; k <= MAX_KERNEL_RADIUS; k++) {
result += kernel[k] * (get_pix(data_ptr, w, h, x, y + k)
+ get_pix(data_ptr, w, h, x, y - k));
}
*(out_pix_ptr++) = saturate((int)result, 256);
}
}
// horizontal pass: for each pixel
out_pix_ptr = data_ptr;
for(int y = 0; y < h; y++) {
for(int x = 0; x < w; x++) {
// sum up all weighted neighbors and the pixel itself
float result = kernel[0] * get_pix(temp_ptr, w, h, x, y);
for(int k = 1; k <= MAX_KERNEL_RADIUS; k++) {
result += kernel[k] * (get_pix(temp_ptr, w, h, x + k, y)
+ get_pix(temp_ptr, w, h, x - k, y));
}
*(out_pix_ptr++) = saturate((int)result, 256);
}
}
// compose output filename
char out_path[MAX_PATH_LEN + 1];
snprintf(out_path, MAX_PATH_LEN, "%s.out.gray", argv[i]);
// write data to output file
FILE * const out_file = fopen(out_path, "wb");
if(NULL == out_file || 1 != fwrite(data_ptr, pix_count, 1, out_file)) {
error(out_path);
}
fclose(out_file);
}
const double end = timer_ms();
// print total time
printf("time: %f ms, %d images => %f ms/image\n",
end - begin, argn - 4, (end - begin) / (argn - 4));
// cleanup
free(temp_ptr);
free(data_ptr);
return 0;
}

View File

@@ -0,0 +1,157 @@
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <stdint.h>
#include <math.h>
#define MAX_PATH_LEN (32 * 1024)
#define MAX_KERNEL_RADIUS 16
struct kernel_params {
float kernel[MAX_KERNEL_RADIUS + 1];
int w;
int h;
};
static void error(const char * message) {
fprintf(stderr, "ERROR: %s\n", message);
exit(-1);
}
static void usage(const char * message, const char * app) {
fprintf(stderr, "Usage: %s width height sigma file1 ... fileN\n", app);
fprintf(stderr, "Example: %s 1920 1080 3 f1.gray f2.gray f3.gray\n", app);
error(message);
}
static double timer_ms() {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000.0 + tv.tv_usec * 0.001;
}
static __device__ int saturate(int n, int max_value) {
return max(0, min(n, max_value - 1));
}
static __device__ int get_pix(const uint8_t * src, int w, int h, int x, int y) {
return (float)src[saturate(x, w) + saturate(y, h) * w];
}
template <int DX, int DY>
static __global__ void convolution(kernel_params p, uint8_t * src, uint8_t * dest) {
// coordinates of processed pixel
const int x = threadIdx.x + blockIdx.x * blockDim.x;
const int y = threadIdx.y + blockIdx.y * blockDim.y;
// stop if out of bounds
if(x >= p.w || y >= p.h) {
return;
}
// get weighted sum of neighbors
float result = p.kernel[0] * get_pix(src, p.w, p.h, x, y);
for(int k = 1; k <= MAX_KERNEL_RADIUS; k++) {
result += p.kernel[k] * (get_pix(src, p.w, p.h, x + k * DX, y + k * DY)
+ get_pix(src, p.w, p.h, x - k * DX, y - k * DY));
}
// save result
dest[x + y * p.w] = saturate((int)result, 256);
}
static float gaussian(float sigma, float x) {
const float e = x / sigma;
return exp(-0.5 * e * e);
}
int main(int argn, char ** argv) {
kernel_params params;
if(argn < 4) {
usage("Wrong argument count", *argv);
}
// read width and height
params.w = atoi(argv[1]);
params.h = atoi(argv[2]);
if(params.w < 1 || params.h < 1) {
usage("Both width and height must be positive integers", *argv);
}
const int pix_count = params.w * params.h;
// read sigma and prepare normalized kernel (sum = 1)
const float sigma = atof(argv[3]);
float kernel_sum = 0.0f;
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
kernel_sum += params.kernel[k] = gaussian(sigma, k);
}
kernel_sum = 2.0 * kernel_sum - params.kernel[0];
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
params.kernel[k] /= kernel_sum;
}
// dump the kernel
printf("Convolution kernel:");
for(int k = -MAX_KERNEL_RADIUS; k <= MAX_KERNEL_RADIUS; k++) {
printf(" %f", params.kernel[k < 0 ? -k : k]);
}
printf("\n");
// prepare buffers
uint8_t * const data_ptr = (uint8_t*)malloc(pix_count);
uint8_t * data_gpu_ptr;
uint8_t * temp_gpu_ptr;
cudaMalloc((void**)&data_gpu_ptr, pix_count);
cudaMalloc((void**)&temp_gpu_ptr, pix_count);
// measure time of processing of all images
const double begin = timer_ms();
for(int i = 4; i < argn; i++) {
// read input data
printf("Processing '%s'\n", argv[i]);
FILE * const src_file = fopen(argv[i], "rb");
if(NULL == src_file || 1 != fread(data_ptr, pix_count, 1, src_file)) {
error(argv[i]);
}
fclose(src_file);
// copy data to GPU memory
cudaMemcpy(data_gpu_ptr, data_ptr, pix_count, cudaMemcpyHostToDevice);
// launch vertical and horizontal pass
dim3 block(32, 32);
dim3 grid((params.w + block.x - 1) / block.x,
(params.h + block.y - 1) / block.y);
convolution<0, 1><<<grid, block>>>(params, data_gpu_ptr, temp_gpu_ptr);
convolution<1, 0><<<grid, block>>>(params, temp_gpu_ptr, data_gpu_ptr);
// copy data back from GPU
cudaMemcpy(data_ptr, data_gpu_ptr, pix_count, cudaMemcpyDeviceToHost);
// compose output filename
char out_path[MAX_PATH_LEN + 1];
snprintf(out_path, MAX_PATH_LEN, "%s.out.gray", argv[i]);
// write data to output file
FILE * const out_file = fopen(out_path, "wb");
if(NULL == out_file || 1 != fwrite(data_ptr, pix_count, 1, out_file)) {
error(out_path);
}
fclose(out_file);
}
const double end = timer_ms();
// print total time
printf("time: %f ms, %d images => %f ms/image\n",
end - begin, argn - 4, (end - begin) / (argn - 4));
// cleanup
free(data_ptr);
cudaFree(data_gpu_ptr);
cudaFree(temp_gpu_ptr);
return 0;
}

View File

@@ -0,0 +1,139 @@
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <stdint.h>
#include <math.h>
#define MAX_PATH_LEN (32 * 1024)
#define MAX_KERNEL_RADIUS 16
static void error(const char * message) {
fprintf(stderr, "ERROR: %s\n", message);
exit(-1);
}
static void usage(const char * message, const char * app) {
fprintf(stderr, "Usage: %s width height sigma file1 ... fileN\n", app);
fprintf(stderr, "Example: %s 1920 1080 3 f1.gray f2.gray f3.gray\n", app);
error(message);
}
static double timer_ms() {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000.0 + tv.tv_usec * 0.001;
}
static int saturate(int n, int max) {
return n < 0 ? 0 : (n < max ? n : max - 1);
}
static int get_pix(const uint8_t * src, int w, int h, int x, int y) {
return src[saturate(x, w) + saturate(y, h) * w];
}
static float gaussian(float sigma, float x) {
const float e = x / sigma;
return exp(-0.5 * e * e);
}
int main(int argn, char ** argv) {
if(argn < 4) {
usage("Wrong argument count", *argv);
}
// read width and height
const int w = atoi(argv[1]);
const int h = atoi(argv[2]);
if(w < 1 || h < 1) {
usage("Both width and height must be positive integers", *argv);
}
const int pix_count = w * h;
// read sigma and prepare normalized kernel (sum = 1)
const float sigma = atof(argv[3]);
float kernel[MAX_KERNEL_RADIUS + 1];
float kernel_sum = 0.0f;
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
kernel_sum += kernel[k] = gaussian(sigma, k);
}
kernel_sum = 2.0 * kernel_sum - kernel[0];
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
kernel[k] /= kernel_sum;
}
// dump the kernel
printf("Convolution kernel:");
for(int k = -MAX_KERNEL_RADIUS; k <= MAX_KERNEL_RADIUS; k++) {
printf(" %f", kernel[k < 0 ? -k : k]);
}
printf("\n");
// prepare buffers
uint8_t * const data_ptr = (uint8_t*)malloc(pix_count);
uint8_t * const temp_ptr = (uint8_t*)malloc(pix_count);
// measure time of processing of all images
const double begin = timer_ms();
#pragma omp parallel for
for(int i = 4; i < argn; i++) {
// read input data
printf("Processing '%s'\n", argv[i]);
FILE * const src_file = fopen(argv[i], "rb");
if(NULL == src_file || 1 != fread(data_ptr, pix_count, 1, src_file)) {
error(argv[i]);
}
fclose(src_file);
// vertical pass: for each pixel
uint8_t * out_pix_ptr = temp_ptr;
for(int y = 0; y < h; y++) {
for(int x = 0; x < w; x++) {
// sum up all weighted neighbors and the pixel itself
float result = kernel[0] * get_pix(data_ptr, w, h, x, y);
for(int k = 1; k <= MAX_KERNEL_RADIUS; k++) {
result += kernel[k] * (get_pix(data_ptr, w, h, x, y + k)
+ get_pix(data_ptr, w, h, x, y - k));
}
*(out_pix_ptr++) = saturate((int)result, 256);
}
}
// horizontal pass: for each pixel
out_pix_ptr = data_ptr;
for(int y = 0; y < h; y++) {
for(int x = 0; x < w; x++) {
// sum up all weighted neighbors and the pixel itself
float result = kernel[0] * get_pix(temp_ptr, w, h, x, y);
for(int k = 1; k <= MAX_KERNEL_RADIUS; k++) {
result += kernel[k] * (get_pix(temp_ptr, w, h, x + k, y)
+ get_pix(temp_ptr, w, h, x - k, y));
}
*(out_pix_ptr++) = saturate((int)result, 256);
}
}
// compose output filename
char out_path[MAX_PATH_LEN + 1];
snprintf(out_path, MAX_PATH_LEN, "%s.out.gray", argv[i]);
// write data to output file
FILE * const out_file = fopen(out_path, "wb");
if(NULL == out_file || 1 != fwrite(data_ptr, pix_count, 1, out_file)) {
error(out_path);
}
fclose(out_file);
}
const double end = timer_ms();
// print total time
printf("time: %f ms, %d images => %f ms/image\n",
end - begin, argn - 4, (end - begin) / (argn - 4));
// cleanup
free(temp_ptr);
free(data_ptr);
return 0;
}

View File

@@ -0,0 +1,205 @@
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <stdint.h>
#include <math.h>
#define MAX_PATH_LEN (32 * 1024)
#define MAX_KERNEL_RADIUS 16
// thread block size
#define TX 32
#define TY 32
struct kernel_params {
float kernel[MAX_KERNEL_RADIUS + 1];
int w;
int h;
};
static void error(const char * message) {
fprintf(stderr, "ERROR: %s\n", message);
exit(-1);
}
static void usage(const char * message, const char * app) {
fprintf(stderr, "Usage: %s width height sigma file1 ... fileN\n", app);
fprintf(stderr, "Example: %s 1920 1080 3 f1.gray f2.gray f3.gray\n", app);
error(message);
}
static double timer_ms() {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000.0 + tv.tv_usec * 0.001;
}
static __device__ int saturate(int n, int max_value) {
return max(0, min(n, max_value - 1));
}
static __device__ int get_pix(const uint8_t * src, int w, int h, int x, int y) {
return (float)src[saturate(x, w) + saturate(y, h) * w];
}
static __global__ void convolution_vertical(kernel_params p, uint8_t * src, uint8_t * dest) {
// coordinates of pixel processed by this thread
const int x = threadIdx.x + blockIdx.x * TX;
const int y = threadIdx.y + blockIdx.y * TY;
// shared cache for processed pixels
__shared__ float cache[TY + 2 * MAX_KERNEL_RADIUS][TX];
// all threads populate shared cache
for(int ny = 0; ny < 2; ny++) {
cache[threadIdx.y + ny * TY][threadIdx.x]
= get_pix(src, p.w, p.h, x, y - MAX_KERNEL_RADIUS + ny * TY);
}
// wait for all threads of block to finish their contribution to cache
__syncthreads();
// stop this thread if out of bounds
if(x >= p.w || y >= p.h) {
return;
}
// get weighted sum of neighbors
float result = p.kernel[0] * cache[MAX_KERNEL_RADIUS + threadIdx.y][threadIdx.x];
for(int k = 1; k <= MAX_KERNEL_RADIUS; k++) {
result += p.kernel[k] * cache[MAX_KERNEL_RADIUS + threadIdx.y - k][threadIdx.x];
result += p.kernel[k] * cache[MAX_KERNEL_RADIUS + threadIdx.y + k][threadIdx.x];
}
// save result
dest[x + y * p.w] = saturate((int)result, 256);
}
static __global__ void convolution_horizontal(kernel_params p, uint8_t * src, uint8_t * dest) {
// coordinates of pixel processed by this thread
const int x = threadIdx.x + blockIdx.x * TX;
const int y = threadIdx.y + blockIdx.y * TY;
// shared cache for processed pixels
__shared__ float cache[TY][TX + 2 * MAX_KERNEL_RADIUS];
// all threads populate shared cache
for(int nx = 0; nx < 2; nx++) {
cache[threadIdx.y][threadIdx.x + nx * TX]
= get_pix(src, p.w, p.h, x - MAX_KERNEL_RADIUS + nx * TX, y);
}
// wait for all threads of block to finish their contribution to cache
__syncthreads();
// stop this thread if out of bounds
if(x >= p.w || y >= p.h) {
return;
}
// get weighted sum of neighbors
float result = p.kernel[0] * cache[threadIdx.y][MAX_KERNEL_RADIUS + threadIdx.x];
for(int k = 1; k <= MAX_KERNEL_RADIUS; k++) {
result += p.kernel[k] * cache[threadIdx.y][MAX_KERNEL_RADIUS + threadIdx.x + k];
result += p.kernel[k] * cache[threadIdx.y][MAX_KERNEL_RADIUS + threadIdx.x - k];
}
// save result
dest[x + y * p.w] = saturate((int)result, 256);
}
static float gaussian(float sigma, float x) {
const float e = x / sigma;
return exp(-0.5 * e * e);
}
int main(int argn, char ** argv) {
kernel_params params;
if(argn < 4) {
usage("Wrong argument count", *argv);
}
// read width and height
params.w = atoi(argv[1]);
params.h = atoi(argv[2]);
if(params.w < 1 || params.h < 1) {
usage("Both width and height must be positive integers", *argv);
}
const int pix_count = params.w * params.h;
// read sigma and prepare normalized kernel (sum = 1)
const float sigma = atof(argv[3]);
float kernel_sum = 0.0f;
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
kernel_sum += params.kernel[k] = gaussian(sigma, k);
}
kernel_sum = 2.0 * kernel_sum - params.kernel[0];
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
params.kernel[k] /= kernel_sum;
}
// dump the kernel
printf("Convolution kernel:");
for(int k = -MAX_KERNEL_RADIUS; k <= MAX_KERNEL_RADIUS; k++) {
printf(" %f", params.kernel[k < 0 ? -k : k]);
}
printf("\n");
// prepare buffers
uint8_t * const data_ptr = (uint8_t*)malloc(pix_count);
uint8_t * data_gpu_ptr;
uint8_t * temp_gpu_ptr;
cudaMalloc((void**)&data_gpu_ptr, pix_count);
cudaMalloc((void**)&temp_gpu_ptr, pix_count);
// measure time of processing of all images
const double begin = timer_ms();
for(int i = 4; i < argn; i++) {
// read input data
printf("Processing '%s'\n", argv[i]);
FILE * const src_file = fopen(argv[i], "rb");
if(NULL == src_file || 1 != fread(data_ptr, pix_count, 1, src_file)) {
error(argv[i]);
}
fclose(src_file);
// copy data to GPU memory
cudaMemcpy(data_gpu_ptr, data_ptr, pix_count, cudaMemcpyHostToDevice);
// launch vertical and horizontal pass
dim3 block(TX, TY);
dim3 grid((params.w + TX - 1) / TX, (params.h + TY - 1) / TY);
convolution_vertical<<<grid, block>>>(params, data_gpu_ptr, temp_gpu_ptr);
convolution_horizontal<<<grid, block>>>(params, temp_gpu_ptr, data_gpu_ptr);
// copy data back from GPU
cudaMemcpy(data_ptr, data_gpu_ptr, pix_count, cudaMemcpyDeviceToHost);
// compose output filename
char out_path[MAX_PATH_LEN + 1];
snprintf(out_path, MAX_PATH_LEN, "%s.out.gray", argv[i]);
// write data to output file
FILE * const out_file = fopen(out_path, "wb");
if(NULL == out_file || 1 != fwrite(data_ptr, pix_count, 1, out_file)) {
error(out_path);
}
fclose(out_file);
}
const double end = timer_ms();
// print total time
printf("time: %f ms, %d images => %f ms/image\n",
end - begin, argn - 4, (end - begin) / (argn - 4));
// cleanup
free(data_ptr);
cudaFree(data_gpu_ptr);
cudaFree(temp_gpu_ptr);
return 0;
}

View File

@@ -0,0 +1,243 @@
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <stdint.h>
#include <math.h>
#define MAX_PATH_LEN (32 * 1024)
#define MAX_KERNEL_RADIUS 16
// thread block size
#define TX 32
#define TY 32
struct kernel_params {
float kernel[MAX_KERNEL_RADIUS + 1];
int w;
int h;
};
static void error(const char * message) {
fprintf(stderr, "ERROR: %s\n", message);
exit(-1);
}
static void usage(const char * message, const char * app) {
fprintf(stderr, "Usage: %s width height sigma file1 ... fileN\n", app);
fprintf(stderr, "Example: %s 1920 1080 3 f1.gray f2.gray f3.gray\n", app);
error(message);
}
static double timer_ms() {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000.0 + tv.tv_usec * 0.001;
}
static __device__ int saturate(int n, int max_value) {
return max(0, min(n, max_value - 1));
}
static __device__ int get_pix(const uint8_t * src, int w, int h, int x, int y) {
return (float)src[saturate(x, w) + saturate(y, h) * w];
}
static __global__ void convolution_vertical(kernel_params p, uint8_t * src, uint8_t * dest) {
// coordinates of pixel processed by this thread
const int x = threadIdx.x + blockIdx.x * TX;
const int y = threadIdx.y + blockIdx.y * TY;
// shared cache for processed pixels
__shared__ float cache[TY + 2 * MAX_KERNEL_RADIUS][TX];
// all threads populate shared cache
for(int ny = 0; ny < 2; ny++) {
cache[threadIdx.y + ny * TY][threadIdx.x]
= get_pix(src, p.w, p.h, x, y - MAX_KERNEL_RADIUS + ny * TY);
}
// wait for all threads of block to finish their contribution to cache
__syncthreads();
// stop this thread if out of bounds
if(x >= p.w || y >= p.h) {
return;
}
// get weighted sum of neighbors
float result = p.kernel[0] * cache[MAX_KERNEL_RADIUS + threadIdx.y][threadIdx.x];
for(int k = 1; k <= MAX_KERNEL_RADIUS; k++) {
result += p.kernel[k] * cache[MAX_KERNEL_RADIUS + threadIdx.y - k][threadIdx.x];
result += p.kernel[k] * cache[MAX_KERNEL_RADIUS + threadIdx.y + k][threadIdx.x];
}
// save result
dest[x + y * p.w] = saturate((int)result, 256);
}
static __global__ void convolution_horizontal(kernel_params p, uint8_t * src, uint8_t * dest) {
// coordinates of pixel processed by this thread
const int x = threadIdx.x + blockIdx.x * TX;
const int y = threadIdx.y + blockIdx.y * TY;
// shared cache for processed pixels
__shared__ float cache[TY][TX + 2 * MAX_KERNEL_RADIUS];
// all threads populate shared cache
for(int nx = 0; nx < 2; nx++) {
cache[threadIdx.y][threadIdx.x + nx * TX]
= get_pix(src, p.w, p.h, x - MAX_KERNEL_RADIUS + nx * TX, y);
}
// wait for all threads of block to finish their contribution to cache
__syncthreads();
// stop this thread if out of bounds
if(x >= p.w || y >= p.h) {
return;
}
// get weighted sum of neighbors
float result = p.kernel[0] * cache[threadIdx.y][MAX_KERNEL_RADIUS + threadIdx.x];
for(int k = 1; k <= MAX_KERNEL_RADIUS; k++) {
result += p.kernel[k] * cache[threadIdx.y][MAX_KERNEL_RADIUS + threadIdx.x + k];
result += p.kernel[k] * cache[threadIdx.y][MAX_KERNEL_RADIUS + threadIdx.x - k];
}
// save result
dest[x + y * p.w] = saturate((int)result, 256);
}
static float gaussian(float sigma, float x) {
const float e = x / sigma;
return exp(-0.5 * e * e);
}
int main(int argn, char ** argv) {
kernel_params params;
if(argn < 4) {
usage("Wrong argument count", *argv);
}
// read width and height
params.w = atoi(argv[1]);
params.h = atoi(argv[2]);
if(params.w < 1 || params.h < 1) {
usage("Both width and height must be positive integers", *argv);
}
const int pix_count = params.w * params.h;
// read sigma and prepare normalized kernel (sum = 1)
const float sigma = atof(argv[3]);
float kernel_sum = 0.0f;
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
kernel_sum += params.kernel[k] = gaussian(sigma, k);
}
kernel_sum = 2.0 * kernel_sum - params.kernel[0];
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
params.kernel[k] /= kernel_sum;
}
// dump the kernel
printf("Convolution kernel:");
for(int k = -MAX_KERNEL_RADIUS; k <= MAX_KERNEL_RADIUS; k++) {
printf(" %f", params.kernel[k < 0 ? -k : k]);
}
printf("\n");
// prepare buffers
uint8_t * const data_ptr = (uint8_t*)malloc(pix_count);
uint8_t * data_gpu_ptr[2];
uint8_t * temp_gpu_ptr[2];
cudaMalloc((void**)(data_gpu_ptr + 0), pix_count);
cudaMalloc((void**)(temp_gpu_ptr + 0), pix_count);
cudaMalloc((void**)(data_gpu_ptr + 1), pix_count);
cudaMalloc((void**)(temp_gpu_ptr + 1), pix_count);
// two CUDA streams for asynchronous kernel and data transfers
cudaStream_t streams[2];
cudaStreamCreate(streams + 0);
cudaStreamCreate(streams + 1);
// measure time of processing of all images
const double begin = timer_ms();
for(int i = 3; i <= argn; i++) {
// index of I/O buffers in this iteration
const int io_idx = i & 1;
// index of computing resources in this iteration
const int comp_idx = io_idx ^ 1;
// start processing of image loaded in previous iteration
// (except of first and last iteration)
if(i > 3 && i < argn) {
// launch vertical and horizontal pass
dim3 block(TX, TY);
dim3 grid((params.w + TX - 1) / TX, (params.h + TY - 1) / TY);
convolution_vertical<<<grid, block, 0, streams[comp_idx]>>>
(params, data_gpu_ptr[comp_idx], temp_gpu_ptr[comp_idx]);
convolution_horizontal<<<grid, block, 0, streams[comp_idx]>>>
(params, temp_gpu_ptr[comp_idx], data_gpu_ptr[comp_idx]);
}
// processing now runs asynchronously on the GPU => save reauls
// from previous iteration (except of two first iterations)
if(i > 4) {
// copy data back from GPU
cudaMemcpyAsync(data_ptr, data_gpu_ptr[io_idx], pix_count,
cudaMemcpyDeviceToHost, streams[io_idx]);
// compose output filename
char out_path[MAX_PATH_LEN + 1];
snprintf(out_path, MAX_PATH_LEN, "%s.out.gray", argv[i - 1]);
// wait for the data to actually appear in the buffer
cudaStreamSynchronize(streams[io_idx]);
// write data to output file
FILE * const out_file = fopen(out_path, "wb");
if(NULL == out_file || 1 != fwrite(data_ptr, pix_count, 1, out_file)) {
error(out_path);
}
fclose(out_file);
}
// load input for next iteration (except of two last iterations)
if(i < (argn - 1)) {
// read input file
printf("Processing '%s'\n", argv[i + 1]);
FILE * const src_file = fopen(argv[i + 1], "rb");
if(NULL == src_file || 1 != fread(data_ptr, pix_count, 1, src_file)) {
error(argv[i + 1]);
}
fclose(src_file);
// copy data to GPU memory
cudaMemcpyAsync(data_gpu_ptr[io_idx], data_ptr, pix_count,
cudaMemcpyHostToDevice, streams[io_idx]);
// make sure that the buffer is ready for next iteration
cudaStreamSynchronize(streams[io_idx]);
}
}
const double end = timer_ms();
// print total time
printf("time: %f ms, %d images => %f ms/image\n",
end - begin, argn - 4, (end - begin) / (argn - 4));
// cleanup
free(data_ptr);
cudaStreamDestroy(streams[0]);
cudaStreamDestroy(streams[1]);
cudaFree(data_gpu_ptr[0]);
cudaFree(temp_gpu_ptr[0]);
cudaFree(data_gpu_ptr[1]);
cudaFree(temp_gpu_ptr[1]);
return 0;
}

View File

@@ -0,0 +1,244 @@
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <stdint.h>
#include <math.h>
#define MAX_PATH_LEN (32 * 1024)
#define MAX_KERNEL_RADIUS 16
// thread block size
#define TX 32
#define TY 32
struct kernel_params {
float kernel[MAX_KERNEL_RADIUS + 1];
int w;
int h;
};
static void error(const char * message) {
fprintf(stderr, "ERROR: %s\n", message);
exit(-1);
}
static void usage(const char * message, const char * app) {
fprintf(stderr, "Usage: %s width height sigma file1 ... fileN\n", app);
fprintf(stderr, "Example: %s 1920 1080 3 f1.gray f2.gray f3.gray\n", app);
error(message);
}
static double timer_ms() {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000.0 + tv.tv_usec * 0.001;
}
static __device__ int saturate(int n, int max_value) {
return max(0, min(n, max_value - 1));
}
static __device__ int get_pix(const uint8_t * src, int w, int h, int x, int y) {
return (float)src[saturate(x, w) + saturate(y, h) * w];
}
static __global__ void convolution_vertical(kernel_params p, uint8_t * src, uint8_t * dest) {
// coordinates of pixel processed by this thread
const int x = threadIdx.x + blockIdx.x * TX;
const int y = threadIdx.y + blockIdx.y * TY;
// shared cache for processed pixels
__shared__ float cache[TY + 2 * MAX_KERNEL_RADIUS][TX];
// all threads populate shared cache
for(int ny = 0; ny < 2; ny++) {
cache[threadIdx.y + ny * TY][threadIdx.x]
= get_pix(src, p.w, p.h, x, y - MAX_KERNEL_RADIUS + ny * TY);
}
// wait for all threads of block to finish their contribution to cache
__syncthreads();
// stop this thread if out of bounds
if(x >= p.w || y >= p.h) {
return;
}
// get weighted sum of neighbors
float result = p.kernel[0] * cache[MAX_KERNEL_RADIUS + threadIdx.y][threadIdx.x];
for(int k = 1; k <= MAX_KERNEL_RADIUS; k++) {
result += p.kernel[k] * cache[MAX_KERNEL_RADIUS + threadIdx.y - k][threadIdx.x];
result += p.kernel[k] * cache[MAX_KERNEL_RADIUS + threadIdx.y + k][threadIdx.x];
}
// save result
dest[x + y * p.w] = saturate((int)result, 256);
}
static __global__ void convolution_horizontal(kernel_params p, uint8_t * src, uint8_t * dest) {
// coordinates of pixel processed by this thread
const int x = threadIdx.x + blockIdx.x * TX;
const int y = threadIdx.y + blockIdx.y * TY;
// shared cache for processed pixels
__shared__ float cache[TY][TX + 2 * MAX_KERNEL_RADIUS];
// all threads populate shared cache
for(int nx = 0; nx < 2; nx++) {
cache[threadIdx.y][threadIdx.x + nx * TX]
= get_pix(src, p.w, p.h, x - MAX_KERNEL_RADIUS + nx * TX, y);
}
// wait for all threads of block to finish their contribution to cache
__syncthreads();
// stop this thread if out of bounds
if(x >= p.w || y >= p.h) {
return;
}
// get weighted sum of neighbors
float result = p.kernel[0] * cache[threadIdx.y][MAX_KERNEL_RADIUS + threadIdx.x];
for(int k = 1; k <= MAX_KERNEL_RADIUS; k++) {
result += p.kernel[k] * cache[threadIdx.y][MAX_KERNEL_RADIUS + threadIdx.x + k];
result += p.kernel[k] * cache[threadIdx.y][MAX_KERNEL_RADIUS + threadIdx.x - k];
}
// save result
dest[x + y * p.w] = saturate((int)result, 256);
}
static float gaussian(float sigma, float x) {
const float e = x / sigma;
return exp(-0.5 * e * e);
}
int main(int argn, char ** argv) {
kernel_params params;
if(argn < 4) {
usage("Wrong argument count", *argv);
}
// read width and height
params.w = atoi(argv[1]);
params.h = atoi(argv[2]);
if(params.w < 1 || params.h < 1) {
usage("Both width and height must be positive integers", *argv);
}
const int pix_count = params.w * params.h;
// read sigma and prepare normalized kernel (sum = 1)
const float sigma = atof(argv[3]);
float kernel_sum = 0.0f;
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
kernel_sum += params.kernel[k] = gaussian(sigma, k);
}
kernel_sum = 2.0 * kernel_sum - params.kernel[0];
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
params.kernel[k] /= kernel_sum;
}
// dump the kernel
printf("Convolution kernel:");
for(int k = -MAX_KERNEL_RADIUS; k <= MAX_KERNEL_RADIUS; k++) {
printf(" %f", params.kernel[k < 0 ? -k : k]);
}
printf("\n");
// prepare buffers
uint8_t * data_ptr;
uint8_t * data_gpu_ptr[2];
uint8_t * temp_gpu_ptr[2];
cudaMalloc((void**)(data_gpu_ptr + 0), pix_count);
cudaMalloc((void**)(temp_gpu_ptr + 0), pix_count);
cudaMalloc((void**)(data_gpu_ptr + 1), pix_count);
cudaMalloc((void**)(temp_gpu_ptr + 1), pix_count);
cudaMallocHost((void**)&data_ptr, pix_count, cudaHostAllocDefault);
// two CUDA streams for asynchronous kernel and data transfers
cudaStream_t streams[2];
cudaStreamCreate(streams + 0);
cudaStreamCreate(streams + 1);
// measure time of processing of all images
const double begin = timer_ms();
for(int i = 3; i <= argn; i++) {
// index of I/O buffers in this iteration
const int io_idx = i & 1;
// index of computing resources in this iteration
const int comp_idx = io_idx ^ 1;
// start processing of image loaded in previous iteration
// (except of first and last iteration)
if(i > 3 && i < argn) {
// launch vertical and horizontal pass
dim3 block(TX, TY);
dim3 grid((params.w + TX - 1) / TX, (params.h + TY - 1) / TY);
convolution_vertical<<<grid, block, 0, streams[comp_idx]>>>
(params, data_gpu_ptr[comp_idx], temp_gpu_ptr[comp_idx]);
convolution_horizontal<<<grid, block, 0, streams[comp_idx]>>>
(params, temp_gpu_ptr[comp_idx], data_gpu_ptr[comp_idx]);
}
// processing now runs asynchronously on the GPU => save reauls
// from previous iteration (except of two first iterations)
if(i > 4) {
// copy data back from GPU
cudaMemcpyAsync(data_ptr, data_gpu_ptr[io_idx], pix_count,
cudaMemcpyDeviceToHost, streams[io_idx]);
// compose output filename
char out_path[MAX_PATH_LEN + 1];
snprintf(out_path, MAX_PATH_LEN, "%s.out.gray", argv[i - 1]);
// wait for the data to actually appear in the buffer
cudaStreamSynchronize(streams[io_idx]);
// write data to output file
FILE * const out_file = fopen(out_path, "wb");
if(NULL == out_file || 1 != fwrite(data_ptr, pix_count, 1, out_file)) {
error(out_path);
}
fclose(out_file);
}
// load input for next iteration (except of two last iterations)
if(i < (argn - 1)) {
// read input file
printf("Processing '%s'\n", argv[i + 1]);
FILE * const src_file = fopen(argv[i + 1], "rb");
if(NULL == src_file || 1 != fread(data_ptr, pix_count, 1, src_file)) {
error(argv[i + 1]);
}
fclose(src_file);
// copy data to GPU memory
cudaMemcpyAsync(data_gpu_ptr[io_idx], data_ptr, pix_count,
cudaMemcpyHostToDevice, streams[io_idx]);
// make sure that the buffer is ready for next iteration
cudaStreamSynchronize(streams[io_idx]);
}
}
const double end = timer_ms();
// print total time
printf("time: %f ms, %d images => %f ms/image\n",
end - begin, argn - 4, (end - begin) / (argn - 4));
// cleanup
cudaStreamDestroy(streams[0]);
cudaStreamDestroy(streams[1]);
cudaFree(data_gpu_ptr[0]);
cudaFree(temp_gpu_ptr[0]);
cudaFree(data_gpu_ptr[1]);
cudaFree(temp_gpu_ptr[1]);
cudaFreeHost(data_ptr);
return 0;
}

View File

@@ -0,0 +1,276 @@
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <stdint.h>
#include <math.h>
#define MAX_PATH_LEN (32 * 1024)
#define MAX_KERNEL_RADIUS 16
#define KERNEL_SIZE (1 + 2 * (MAX_KERNEL_RADIUS))
// thread block size
#define TX 32
#define TY 32
#define TX_V 128
#define TY_V 64
struct kernel_params {
float kernel[MAX_KERNEL_RADIUS + 1];
int w;
int h;
};
static void error(const char * message) {
fprintf(stderr, "ERROR: %s\n", message);
exit(-1);
}
static void usage(const char * message, const char * app) {
fprintf(stderr, "Usage: %s width height sigma file1 ... fileN\n", app);
fprintf(stderr, "Example: %s 1920 1080 3 f1.gray f2.gray f3.gray\n", app);
error(message);
}
static double timer_ms() {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000.0 + tv.tv_usec * 0.001;
}
static __device__ int saturate(int n, int max_value) {
return max(0, min(n, max_value - 1));
}
static __device__ int get_pix(const uint8_t * src, int w, int h, int x, int y) {
return (float)src[saturate(x, w) + saturate(y, h) * w];
}
static __global__ void convolution_vertical(kernel_params p, uint8_t * src, uint8_t * dest) {
// coordinate of column processed by this thread
const int x = threadIdx.x + blockIdx.x * TX_V;
// stop if thread's column is out of bounds
if(x >= p.w) {
return;
}
// thread's private cache for last values (organized as circular buffer)
float cache[KERNEL_SIZE];
// y-coordinate of next pixel to be saved and pointer to it
int dest_y = threadIdx.y + blockIdx.y * TY_V;
uint8_t * dest_ptr = dest + x + dest_y * p.w;
// y-coordinate of next pixel to be loaded and pointer to it
int src_y = dest_y - MAX_KERNEL_RADIUS;
const uint8_t * src_pix = src + x + saturate(src_y, p.h) * p.w;
// populate the cache, except of last item
#pragma unroll
for(int n = 0; n < MAX_KERNEL_RADIUS * 2; n++) {
// load next pixel
cache[n] = *src_pix;
// advance the pointer only if not at the top or bottom of the image
src_y++;
if(src_y > 0 && src_y < p.h) {
src_pix += p.w;
}
}
// keep loading more pixels, saving one output pixel for each loaded pixel
#pragma unroll
for(int n = 0; n < TY_V; n++) {
// load next sample to the buffer and possibly advance the pointer
cache[(n + KERNEL_SIZE - 1) % KERNEL_SIZE] = *src_pix;
src_y++;
if(src_y > 0 && src_y < p.h) {
src_pix += p.w;
}
// compute value of current output
float val = cache[(n + MAX_KERNEL_RADIUS) % KERNEL_SIZE] * p.kernel[0];
#pragma unroll
for(int k = 1; k <= MAX_KERNEL_RADIUS; k++) {
val += cache[(n + MAX_KERNEL_RADIUS + k) % KERNEL_SIZE] * p.kernel[k];
val += cache[(n + MAX_KERNEL_RADIUS - k) % KERNEL_SIZE] * p.kernel[k];
}
// save current output only if not at the end
if(dest_y++ < p.h) {
*dest_ptr = saturate((int)val, 256);
}
dest_ptr += p.w;
}
}
static __global__ void convolution_horizontal(kernel_params p, uint8_t * src, uint8_t * dest) {
// coordinates of pixel processed by this thread
const int x = threadIdx.x + blockIdx.x * TX;
const int y = threadIdx.y + blockIdx.y * TY;
// shared cache for processed pixels
__shared__ float cache[TY][TX + 2 * MAX_KERNEL_RADIUS];
// all threads populate shared cache
for(int nx = 0; nx < 2; nx++) {
cache[threadIdx.y][threadIdx.x + nx * TX]
= get_pix(src, p.w, p.h, x - MAX_KERNEL_RADIUS + nx * TX, y);
}
// wait for all threads of block to finish their contribution to cache
__syncthreads();
// stop this thread if out of bounds
if(x >= p.w || y >= p.h) {
return;
}
// get weighted sum of neighbors
float result = p.kernel[0] * cache[threadIdx.y][MAX_KERNEL_RADIUS + threadIdx.x];
for(int k = 1; k <= MAX_KERNEL_RADIUS; k++) {
result += p.kernel[k] * cache[threadIdx.y][MAX_KERNEL_RADIUS + threadIdx.x + k];
result += p.kernel[k] * cache[threadIdx.y][MAX_KERNEL_RADIUS + threadIdx.x - k];
}
// save result
dest[x + y * p.w] = saturate((int)result, 256);
}
static float gaussian(float sigma, float x) {
const float e = x / sigma;
return exp(-0.5 * e * e);
}
int main(int argn, char ** argv) {
kernel_params params;
if(argn < 4) {
usage("Wrong argument count", *argv);
}
// read width and height
params.w = atoi(argv[1]);
params.h = atoi(argv[2]);
if(params.w < 1 || params.h < 1) {
usage("Both width and height must be positive integers", *argv);
}
const int pix_count = params.w * params.h;
// read sigma and prepare normalized kernel (sum = 1)
const float sigma = atof(argv[3]);
float kernel_sum = 0.0f;
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
kernel_sum += params.kernel[k] = gaussian(sigma, k);
}
kernel_sum = 2.0 * kernel_sum - params.kernel[0];
for(int k = 0; k <= MAX_KERNEL_RADIUS; k++) {
params.kernel[k] /= kernel_sum;
}
// dump the kernel
printf("Convolution kernel:");
for(int k = -MAX_KERNEL_RADIUS; k <= MAX_KERNEL_RADIUS; k++) {
printf(" %f", params.kernel[k < 0 ? -k : k]);
}
printf("\n");
// prepare buffers
uint8_t * data_ptr;
uint8_t * data_gpu_ptr[2];
uint8_t * temp_gpu_ptr[2];
cudaMalloc((void**)(data_gpu_ptr + 0), pix_count);
cudaMalloc((void**)(temp_gpu_ptr + 0), pix_count);
cudaMalloc((void**)(data_gpu_ptr + 1), pix_count);
cudaMalloc((void**)(temp_gpu_ptr + 1), pix_count);
cudaMallocHost((void**)&data_ptr, pix_count, cudaHostAllocDefault);
// two CUDA streams for asynchronous kernel and data transfers
cudaStream_t streams[2];
cudaStreamCreate(streams + 0);
cudaStreamCreate(streams + 1);
// measure time of processing of all images
const double begin = timer_ms();
for(int i = 3; i <= argn; i++) {
// index of I/O buffers in this iteration
const int io_idx = i & 1;
// index of computing resources in this iteration
const int comp_idx = io_idx ^ 1;
// start processing of image loaded in previous iteration
// (except of first and last iteration)
if(i > 3 && i < argn) {
// launch vertical and horizontal pass
dim3 block_h(TX, TY);
dim3 block_v(TX_V, 1);
dim3 grid_h((params.w + TX - 1) / TX, (params.h + TY - 1) / TY);
dim3 grid_v((params.w + TX_V - 1) / TX_V, (params.h + TY_V - 1) / TY_V);
convolution_vertical<<<grid_v, block_v, 0, streams[comp_idx]>>>
(params, data_gpu_ptr[comp_idx], temp_gpu_ptr[comp_idx]);
convolution_horizontal<<<grid_h, block_h, 0, streams[comp_idx]>>>
(params, temp_gpu_ptr[comp_idx], data_gpu_ptr[comp_idx]);
}
// processing now runs asynchronously on the GPU => save reauls
// from previous iteration (except of two first iterations)
if(i > 4) {
// copy data back from GPU
cudaMemcpyAsync(data_ptr, data_gpu_ptr[io_idx], pix_count,
cudaMemcpyDeviceToHost, streams[io_idx]);
// compose output filename
char out_path[MAX_PATH_LEN + 1];
snprintf(out_path, MAX_PATH_LEN, "%s.out.gray", argv[i - 1]);
// wait for the data to actually appear in the buffer
cudaStreamSynchronize(streams[io_idx]);
// write data to output file
FILE * const out_file = fopen(out_path, "wb");
if(NULL == out_file || 1 != fwrite(data_ptr, pix_count, 1, out_file)) {
error(out_path);
}
fclose(out_file);
}
// load input for next iteration (except of two last iterations)
if(i < (argn - 1)) {
// read input file
printf("Processing '%s'\n", argv[i + 1]);
FILE * const src_file = fopen(argv[i + 1], "rb");
if(NULL == src_file || 1 != fread(data_ptr, pix_count, 1, src_file)) {
error(argv[i + 1]);
}
fclose(src_file);
// copy data to GPU memory
cudaMemcpyAsync(data_gpu_ptr[io_idx], data_ptr, pix_count,
cudaMemcpyHostToDevice, streams[io_idx]);
// make sure that the buffer is ready for next iteration
cudaStreamSynchronize(streams[io_idx]);
}
}
const double end = timer_ms();
// print total time
printf("time: %f ms, %d images => %f ms/image\n",
end - begin, argn - 4, (end - begin) / (argn - 4));
// cleanup
cudaStreamDestroy(streams[0]);
cudaStreamDestroy(streams[1]);
cudaFree(data_gpu_ptr[0]);
cudaFree(temp_gpu_ptr[0]);
cudaFree(data_gpu_ptr[1]);
cudaFree(temp_gpu_ptr[1]);
cudaFreeHost(data_ptr);
return 0;
}