Files
minne/common/src/utils/embedding.rs
2025-09-06 21:00:39 +02:00

90 lines
2.8 KiB
Rust

use async_openai::types::CreateEmbeddingRequestArgs;
use tracing::debug;
use crate::{
error::AppError,
storage::{db::SurrealDbClient, types::system_settings::SystemSettings},
};
/// Generates an embedding vector for the given input text using OpenAI's embedding model.
///
/// This function takes a text input and converts it into a numerical vector representation (embedding)
/// using OpenAI's text-embedding-3-small model. These embeddings can be used for semantic similarity
/// comparisons, vector search, and other natural language processing tasks.
///
/// # Arguments
///
/// * `client`: The OpenAI client instance used to make API requests.
/// * `input`: The text string to generate embeddings for.
///
/// # Returns
///
/// Returns a `Result` containing either:
/// * `Ok(Vec<f32>)`: A vector of 32-bit floating point numbers representing the text embedding
/// * `Err(ProcessingError)`: An error if the embedding generation fails
///
/// # Errors
///
/// This function can return a `AppError` in the following cases:
/// * If the OpenAI API request fails
/// * If the request building fails
/// * If no embedding data is received in the response
pub async fn generate_embedding(
client: &async_openai::Client<async_openai::config::OpenAIConfig>,
input: &str,
db: &SurrealDbClient,
) -> Result<Vec<f32>, AppError> {
let model = SystemSettings::get_current(db).await?;
let request = CreateEmbeddingRequestArgs::default()
.model(model.embedding_model)
.dimensions(model.embedding_dimensions)
.input([input])
.build()?;
// Send the request to OpenAI
let response = client.embeddings().create(request).await?;
// Extract the embedding vector
let embedding: Vec<f32> = response
.data
.first()
.ok_or_else(|| AppError::LLMParsing("No embedding data received".into()))?
.embedding
.clone();
Ok(embedding)
}
/// Generates an embedding vector using a specific model and dimension.
///
/// This is used for the re-embedding process where the model and dimensions
/// are known ahead of time and shouldn't be repeatedly fetched from settings.
pub async fn generate_embedding_with_params(
client: &async_openai::Client<async_openai::config::OpenAIConfig>,
input: &str,
model: &str,
dimensions: u32,
) -> Result<Vec<f32>, AppError> {
let request = CreateEmbeddingRequestArgs::default()
.model(model)
.input([input])
.dimensions(dimensions)
.build()?;
let response = client.embeddings().create(request).await?;
let embedding = response
.data
.first()
.ok_or_else(|| AppError::LLMParsing("No embedding data received from API".into()))?
.embedding
.clone();
debug!(
"Embedding was created with {:?} dimensions",
embedding.len()
);
Ok(embedding)
}