[Bug] GetDERPMap tls failed to verify certificate #731

Closed
opened 2025-12-29 02:23:01 +01:00 by adam · 1 comment
Owner

Originally created by @Shyclops on GitHub (Jun 17, 2024).

Is this a support request?

  • This is not a support request

Is there an existing issue for this?

  • I have searched the existing issues

Current Behavior

GetDERPMap fails to populate initial DERPMap causing initilization to fail

2024-06-17T16:28:28Z INF Opening database database=sqlite3 path=/etc/headscale/db.sqlite
2024-06-17T16:28:29Z ERR Could not load DERP map from path error="Get \"https://controlplane.tailscale.com/derpmap/default\": tls: failed to verify certificate: x509: certificate signed by unknown authority" func=GetDERPMap url=https://controlplane.tailscale.com/derpmap/default
2024-06-17T16:28:29Z WRN DERP map is empty, not a single DERP map datasource was loaded correctly or contained a region
2024-06-17T16:28:29Z INF Setting up a DERPMap update worker frequency=86400000
2024-06-17T16:28:29Z FTL home/runner/work/headscale/headscale/cmd/headscale/cli/server.go:26 > Error starting server error="initial DERPMap is empty, Headscale requires at least one entry"

Expected Behavior

GetDERPMap succesfully gets DERPMap and populates initial DERPMap

Steps To Reproduce

  1. On Ubuntu
  2. With the following docker-compose (main difference is network for reverse proxy and volume to get cert and key from caddy reverse proxy
services:
  headscale:
    image: headscale/headscale:unstable
    restart: unless-stopped
    container_name: headscale
    ports:
      #- "0.0.0.0:8080:8080"
      - "127.0.0.1:9090:9090"
    volumes:
      # pls change [config_path] to the fullpath of the config folder just created
      - ./config:/etc/headscale
      - caddy_data:/etc
    command: serve
    networks:
      reverseproxy-nw:
  
  headscale-ui:
    container_name: headscale-ui
    image: ghcr.io/gurucomputing/headscale-ui:latest
    restart: unless-stopped
    networks:
      reverseproxy-nw:


networks:
  reverseproxy-nw:
    external: true

volumes:
  caddy_data:
    external: true
  1. run docker compose up -d
  2. run docker logs headscale
  3. see error

Environment

- OS:Ubuntu Server 24.04
- Headscale version: v0.23.0-alpha12
- Tailscale version: 1.68.1

Runtime environment

  • Headscale is behind a (reverse) proxy
  • Headscale runs in a container

Anything else?

Headscale config:

---
# headscale will look for a configuration file named `config.yaml` (or `config.json`) in the following order:
#
# - `/etc/headscale`
# - `~/.headscale`
# - current working directory

# The url clients will connect to.
# Typically this will be a domain like:
#
# https://myheadscale.example.com:443
#
server_url: https://hs.<domain>.dev

# Address to listen to / bind to on the server
#
# For production:
# listen_addr: 0.0.0.0:8080
listen_addr: 0.0.0.0:8080

# Address to listen to /metrics, you may want
# to keep this endpoint private to your internal
# network
#
metrics_listen_addr: 0.0.0.0:9090

# Address to listen for gRPC.
# gRPC is used for controlling a headscale server
# remotely with the CLI
# Note: Remote access _only_ works if you have
# valid certificates.
#
# For production:
# grpc_listen_addr: 0.0.0.0:50443
grpc_listen_addr: 127.0.0.1:50443

# Allow the gRPC admin interface to run in INSECURE
# mode. This is not recommended as the traffic will
# be unencrypted. Only enable if you know what you
# are doing.
grpc_allow_insecure: false

private_key_path: /etc/headscale/private.key

# The Noise section includes specific configuration for the
# TS2021 Noise protocol
noise:
  # The Noise private key is used to encrypt the
  # traffic between headscale and Tailscale clients when
  # using the new Noise-based protocol.
  private_key_path: /etc/headscale/noise_private.key

# List of IP prefixes to allocate tailaddresses from.
# Each prefix consists of either an IPv4 or IPv6 address,
# and the associated prefix length, delimited by a slash.
# It must be within IP ranges supported by the Tailscale
# client - i.e., subnets of 100.64.0.0/10 and fd7a:115c:a1e0::/48.
# See below:
# IPv6: https://github.com/tailscale/tailscale/blob/22ebb25e833264f58d7c3f534a8b166894a89536/net/tsaddr/tsaddr.go#LL81C52-L81C71
# IPv4: https://github.com/tailscale/tailscale/blob/22ebb25e833264f58d7c3f534a8b166894a89536/net/tsaddr/tsaddr.go#L33
# Any other range is NOT supported, and it will cause unexpected issues.
prefixes:
  v6: fd7a:115c:a1e0::/48
  v4: 100.64.0.0/10

  # Strategy used for allocation of IPs to nodes, available options:
  # - sequential (default): assigns the next free IP from the previous given IP.
  # - random: assigns the next free IP from a pseudo-random IP generator (crypto/rand).
  allocation: sequential

# DERP is a relay system that Tailscale uses when a direct
# connection cannot be established.
# https://tailscale.com/blog/how-tailscale-works/#encrypted-tcp-relays-derp
#
# headscale needs a list of DERP servers that can be presented
# to the clients.
derp:
  server:
    # If enabled, runs the embedded DERP server and merges it into the rest of the DERP config
    # The Headscale server_url defined above MUST be using https, DERP requires TLS to be in place
    enabled: false

    # Region ID to use for the embedded DERP server.
    # The local DERP prevails if the region ID collides with other region ID coming from
    # the regular DERP config.
    region_id: 999

    # Region code and name are displayed in the Tailscale UI to identify a DERP region
    region_code: "headscale"
    region_name: "Headscale Embedded DERP"

    # Listens over UDP at the configured address for STUN connections - to help with NAT traversal.
    # When the embedded DERP server is enabled stun_listen_addr MUST be defined.
    #
    # For more details on how this works, check this great article: https://tailscale.com/blog/how-tailscale-works/
    stun_listen_addr: "0.0.0.0:3478"

    # Private key used to encrypt the traffic between headscale DERP
    # and Tailscale clients.
    # The private key file will be autogenerated if it's missing.
    #
    private_key_path: /etc/headscale/derp_server_private.key

    # This flag can be used, so the DERP map entry for the embedded DERP server is not written automatically,
    # it enables the creation of your very own DERP map entry using a locally available file with the parameter DERP.paths
    # If you enable the DERP server and set this to false, it is required to add the DERP server to the DERP map using DERP.paths
    automatically_add_embedded_derp_region: true

    # For better connection stability (especially when using an Exit-Node and DNS is not working),
    # it is possible to optionally add the public IPv4 and IPv6 address to the Derp-Map using:
    ipv4: 1.2.3.4
    ipv6: 2001:db8::1

  # List of externally available DERP maps encoded in JSON
  urls:
    - https://controlplane.tailscale.com/derpmap/default

  # Locally available DERP map files encoded in YAML
  #
  # This option is mostly interesting for people hosting
  # their own DERP servers:
  # https://tailscale.com/kb/1118/custom-derp-servers/
  #
  # paths:
  #   - /etc/headscale/derp-example.yaml
  paths: []

  # If enabled, a worker will be set up to periodically
  # refresh the given sources and update the derpmap
  # will be set up.
  auto_update_enabled: true

  # How often should we check for DERP updates?
  update_frequency: 24h

# Disables the automatic check for headscale updates on startup
disable_check_updates: false

# Time before an inactive ephemeral node is deleted?
ephemeral_node_inactivity_timeout: 30m

database:
  type: sqlite3

  # SQLite config
  sqlite:
    path: /etc/headscale/db.sqlite

  # # Postgres config
  # postgres:
  #   # If using a Unix socket to connect to Postgres, set the socket path in the 'host' field and leave 'port' blank.
  #   host: localhost
  #   port: 5432
  #   name: headscale
  #   user: foo
  #   pass: bar
  #   max_open_conns: 10
  #   max_idle_conns: 10
  #   conn_max_idle_time_secs: 3600

  #   # If other 'sslmode' is required instead of 'require(true)' and 'disabled(false)', set the 'sslmode' you need
  #   # in the 'ssl' field. Refers to https://www.postgresql.org/docs/current/libpq-ssl.html Table 34.1.
  #   ssl: false

### TLS configuration
#
## Let's encrypt / ACME
#
# headscale supports automatically requesting and setting up
# TLS for a domain with Let's Encrypt.
#
# URL to ACME directory
acme_url: https://acme-v02.api.letsencrypt.org/directory

# Email to register with ACME provider
acme_email: ""

# Domain name to request a TLS certificate for:
tls_letsencrypt_hostname: ""

# Path to store certificates and metadata needed by
# letsencrypt
# For production:
tls_letsencrypt_cache_dir: /etc/headscale/cache

# Type of ACME challenge to use, currently supported types:
# HTTP-01 or TLS-ALPN-01
# See [docs/tls.md](docs/tls.md) for more information
tls_letsencrypt_challenge_type: TLS-ALPN-01
# When HTTP-01 challenge is chosen, letsencrypt must set up a
# verification endpoint, and it will be listening on:
# :http = port 80
tls_letsencrypt_listen: ":http"

## Use already defined certificates:
tls_cert_path: "/etc/caddy/certificates/acme-v02.api.letsencrypt.org-directory/hs.<domain>.dev/hs.<domain>.dev.crt"
tls_key_path: "/etc/caddy/certificates/acme-v02.api.letsencrypt.org-directory/hs.<domain>dev/hs.<domain>.dev.key"

log:
  # Output formatting for logs: text or json
  format: text
  level: info

# Path to a file containing ACL policies.
# ACLs can be defined as YAML or HUJSON.
# https://tailscale.com/kb/1018/acls/
acl_policy_path: ""

## DNS
#
# headscale supports Tailscale's DNS configuration and MagicDNS.
# Please have a look to their KB to better understand the concepts:
#
# - https://tailscale.com/kb/1054/dns/
# - https://tailscale.com/kb/1081/magicdns/
# - https://tailscale.com/blog/2021-09-private-dns-with-magicdns/
#
dns_config:
  # Whether to prefer using Headscale provided DNS or use local.
  override_local_dns: true

  # List of DNS servers to expose to clients.
  nameservers:
    - 100.64.0.1

  # NextDNS (see https://tailscale.com/kb/1218/nextdns/).
  # "abc123" is example NextDNS ID, replace with yours.
  #
  # With metadata sharing:
  # nameservers:
  #   - https://dns.nextdns.io/abc123
  #
  # Without metadata sharing:
  # nameservers:
  #   - 2a07:a8c0::ab:c123
  #   - 2a07:a8c1::ab:c123

  # Split DNS (see https://tailscale.com/kb/1054/dns/),
  # list of search domains and the DNS to query for each one.
  #
  # restricted_nameservers:
  #   foo.bar.com:
  #     - 1.1.1.1
  #   darp.headscale.net:
  #     - 1.1.1.1
  #     - 8.8.8.8

  # Search domains to inject.
  domains: []

  # Extra DNS records
  # so far only A-records are supported (on the tailscale side)
  # See https://github.com/juanfont/headscale/blob/main/docs/dns-records.md#Limitations
  # extra_records:
  #   - name: "grafana.myvpn.example.com"
  #     type: "A"
  #     value: "100.64.0.3"
  #
  #   # you can also put it in one line
  #   - { name: "prometheus.myvpn.example.com", type: "A", value: "100.64.0.3" }

  # Whether to use [MagicDNS](https://tailscale.com/kb/1081/magicdns/).
  # Only works if there is at least a nameserver defined.
  magic_dns: true

  # Defines the base domain to create the hostnames for MagicDNS.
  # `base_domain` must be a FQDNs, without the trailing dot.
  # The FQDN of the hosts will be
  # `hostname.user.base_domain` (e.g., _myhost.myuser.example.com_).
  base_domain: hs.<domain>.dev

# Unix socket used for the CLI to connect without authentication
# Note: for production you will want to set this to something like:
unix_socket: /etc/headscale/headscale.sock
unix_socket_permission: "0770"
#
# headscale supports experimental OpenID connect support,
# it is still being tested and might have some bugs, please
# help us test it.
# OpenID Connect
# oidc:
#   only_start_if_oidc_is_available: true
#   issuer: "https://your-oidc.issuer.com/path"
#   client_id: "your-oidc-client-id"
#   client_secret: "your-oidc-client-secret"
#   # Alternatively, set `client_secret_path` to read the secret from the file.
#   # It resolves environment variables, making integration to systemd's
#   # `LoadCredential` straightforward:
#   client_secret_path: "${CREDENTIALS_DIRECTORY}/oidc_client_secret"
#   # client_secret and client_secret_path are mutually exclusive.
#
#   # The amount of time from a node is authenticated with OpenID until it
#   # expires and needs to reauthenticate.
#   # Setting the value to "0" will mean no expiry.
#   expiry: 180d
#
#   # Use the expiry from the token received from OpenID when the user logged
#   # in, this will typically lead to frequent need to reauthenticate and should
#   # only been enabled if you know what you are doing.
#   # Note: enabling this will cause `oidc.expiry` to be ignored.
#   use_expiry_from_token: false
#
#   # Customize the scopes used in the OIDC flow, defaults to "openid", "profile" and "email" and add custom query
#   # parameters to the Authorize Endpoint request. Scopes default to "openid", "profile" and "email".
#
#   scope: ["openid", "profile", "email", "custom"]
#   extra_params:
#     domain_hint: example.com
#
#   # List allowed principal domains and/or users. If an authenticated user's domain is not in this list, the
#   # authentication request will be rejected.
#
#   allowed_domains:
#     - example.com
#   # Note: Groups from keycloak have a leading '/'
#   allowed_groups:
#     - /headscale
#   allowed_users:
#     - alice@example.com
#
#   # If `strip_email_domain` is set to `true`, the domain part of the username email address will be removed.
#   # This will transform `first-name.last-name@example.com` to the user `first-name.last-name`
#   # If `strip_email_domain` is set to `false` the domain part will NOT be removed resulting to the following
#   user: `first-name.last-name.example.com`
#
#   strip_email_domain: true

# Logtail configuration
# Logtail is Tailscales logging and auditing infrastructure, it allows the control panel
# to instruct tailscale nodes to log their activity to a remote server.
logtail:
  # Enable logtail for this headscales clients.
  # As there is currently no support for overriding the log server in headscale, this is
  # disabled by default. Enabling this will make your clients send logs to Tailscale Inc.
  enabled: false

# Enabling this option makes devices prefer a random port for WireGuard traffic over the
# default static port 41641. This option is intended as a workaround for some buggy
# firewall devices. See https://tailscale.com/kb/1181/firewalls/ for more information.
randomize_client_port: false

Caddy file (excerpt):

https://hs.<domain>.dev {
    reverse_proxy /web* https://headscale-ui {
        transport http {
            tls_insecure_skip_verify
        }
    }

    reverse_proxy * http://headscale:8080
}
Originally created by @Shyclops on GitHub (Jun 17, 2024). ### Is this a support request? - [X] This is not a support request ### Is there an existing issue for this? - [X] I have searched the existing issues ### Current Behavior GetDERPMap fails to populate initial DERPMap causing initilization to fail ``` 2024-06-17T16:28:28Z INF Opening database database=sqlite3 path=/etc/headscale/db.sqlite 2024-06-17T16:28:29Z ERR Could not load DERP map from path error="Get \"https://controlplane.tailscale.com/derpmap/default\": tls: failed to verify certificate: x509: certificate signed by unknown authority" func=GetDERPMap url=https://controlplane.tailscale.com/derpmap/default 2024-06-17T16:28:29Z WRN DERP map is empty, not a single DERP map datasource was loaded correctly or contained a region 2024-06-17T16:28:29Z INF Setting up a DERPMap update worker frequency=86400000 2024-06-17T16:28:29Z FTL home/runner/work/headscale/headscale/cmd/headscale/cli/server.go:26 > Error starting server error="initial DERPMap is empty, Headscale requires at least one entry" ``` ### Expected Behavior GetDERPMap succesfully gets DERPMap and populates initial DERPMap ### Steps To Reproduce 1. On Ubuntu 2. With the following docker-compose (main difference is network for reverse proxy and volume to get cert and key from caddy reverse proxy ``` services: headscale: image: headscale/headscale:unstable restart: unless-stopped container_name: headscale ports: #- "0.0.0.0:8080:8080" - "127.0.0.1:9090:9090" volumes: # pls change [config_path] to the fullpath of the config folder just created - ./config:/etc/headscale - caddy_data:/etc command: serve networks: reverseproxy-nw: headscale-ui: container_name: headscale-ui image: ghcr.io/gurucomputing/headscale-ui:latest restart: unless-stopped networks: reverseproxy-nw: networks: reverseproxy-nw: external: true volumes: caddy_data: external: true ``` 3. run docker compose up -d 4. run docker logs headscale 5. see error ### Environment ```markdown - OS:Ubuntu Server 24.04 - Headscale version: v0.23.0-alpha12 - Tailscale version: 1.68.1 ``` ### Runtime environment - [X] Headscale is behind a (reverse) proxy - [X] Headscale runs in a container ### Anything else? Headscale config: ``` --- # headscale will look for a configuration file named `config.yaml` (or `config.json`) in the following order: # # - `/etc/headscale` # - `~/.headscale` # - current working directory # The url clients will connect to. # Typically this will be a domain like: # # https://myheadscale.example.com:443 # server_url: https://hs.<domain>.dev # Address to listen to / bind to on the server # # For production: # listen_addr: 0.0.0.0:8080 listen_addr: 0.0.0.0:8080 # Address to listen to /metrics, you may want # to keep this endpoint private to your internal # network # metrics_listen_addr: 0.0.0.0:9090 # Address to listen for gRPC. # gRPC is used for controlling a headscale server # remotely with the CLI # Note: Remote access _only_ works if you have # valid certificates. # # For production: # grpc_listen_addr: 0.0.0.0:50443 grpc_listen_addr: 127.0.0.1:50443 # Allow the gRPC admin interface to run in INSECURE # mode. This is not recommended as the traffic will # be unencrypted. Only enable if you know what you # are doing. grpc_allow_insecure: false private_key_path: /etc/headscale/private.key # The Noise section includes specific configuration for the # TS2021 Noise protocol noise: # The Noise private key is used to encrypt the # traffic between headscale and Tailscale clients when # using the new Noise-based protocol. private_key_path: /etc/headscale/noise_private.key # List of IP prefixes to allocate tailaddresses from. # Each prefix consists of either an IPv4 or IPv6 address, # and the associated prefix length, delimited by a slash. # It must be within IP ranges supported by the Tailscale # client - i.e., subnets of 100.64.0.0/10 and fd7a:115c:a1e0::/48. # See below: # IPv6: https://github.com/tailscale/tailscale/blob/22ebb25e833264f58d7c3f534a8b166894a89536/net/tsaddr/tsaddr.go#LL81C52-L81C71 # IPv4: https://github.com/tailscale/tailscale/blob/22ebb25e833264f58d7c3f534a8b166894a89536/net/tsaddr/tsaddr.go#L33 # Any other range is NOT supported, and it will cause unexpected issues. prefixes: v6: fd7a:115c:a1e0::/48 v4: 100.64.0.0/10 # Strategy used for allocation of IPs to nodes, available options: # - sequential (default): assigns the next free IP from the previous given IP. # - random: assigns the next free IP from a pseudo-random IP generator (crypto/rand). allocation: sequential # DERP is a relay system that Tailscale uses when a direct # connection cannot be established. # https://tailscale.com/blog/how-tailscale-works/#encrypted-tcp-relays-derp # # headscale needs a list of DERP servers that can be presented # to the clients. derp: server: # If enabled, runs the embedded DERP server and merges it into the rest of the DERP config # The Headscale server_url defined above MUST be using https, DERP requires TLS to be in place enabled: false # Region ID to use for the embedded DERP server. # The local DERP prevails if the region ID collides with other region ID coming from # the regular DERP config. region_id: 999 # Region code and name are displayed in the Tailscale UI to identify a DERP region region_code: "headscale" region_name: "Headscale Embedded DERP" # Listens over UDP at the configured address for STUN connections - to help with NAT traversal. # When the embedded DERP server is enabled stun_listen_addr MUST be defined. # # For more details on how this works, check this great article: https://tailscale.com/blog/how-tailscale-works/ stun_listen_addr: "0.0.0.0:3478" # Private key used to encrypt the traffic between headscale DERP # and Tailscale clients. # The private key file will be autogenerated if it's missing. # private_key_path: /etc/headscale/derp_server_private.key # This flag can be used, so the DERP map entry for the embedded DERP server is not written automatically, # it enables the creation of your very own DERP map entry using a locally available file with the parameter DERP.paths # If you enable the DERP server and set this to false, it is required to add the DERP server to the DERP map using DERP.paths automatically_add_embedded_derp_region: true # For better connection stability (especially when using an Exit-Node and DNS is not working), # it is possible to optionally add the public IPv4 and IPv6 address to the Derp-Map using: ipv4: 1.2.3.4 ipv6: 2001:db8::1 # List of externally available DERP maps encoded in JSON urls: - https://controlplane.tailscale.com/derpmap/default # Locally available DERP map files encoded in YAML # # This option is mostly interesting for people hosting # their own DERP servers: # https://tailscale.com/kb/1118/custom-derp-servers/ # # paths: # - /etc/headscale/derp-example.yaml paths: [] # If enabled, a worker will be set up to periodically # refresh the given sources and update the derpmap # will be set up. auto_update_enabled: true # How often should we check for DERP updates? update_frequency: 24h # Disables the automatic check for headscale updates on startup disable_check_updates: false # Time before an inactive ephemeral node is deleted? ephemeral_node_inactivity_timeout: 30m database: type: sqlite3 # SQLite config sqlite: path: /etc/headscale/db.sqlite # # Postgres config # postgres: # # If using a Unix socket to connect to Postgres, set the socket path in the 'host' field and leave 'port' blank. # host: localhost # port: 5432 # name: headscale # user: foo # pass: bar # max_open_conns: 10 # max_idle_conns: 10 # conn_max_idle_time_secs: 3600 # # If other 'sslmode' is required instead of 'require(true)' and 'disabled(false)', set the 'sslmode' you need # # in the 'ssl' field. Refers to https://www.postgresql.org/docs/current/libpq-ssl.html Table 34.1. # ssl: false ### TLS configuration # ## Let's encrypt / ACME # # headscale supports automatically requesting and setting up # TLS for a domain with Let's Encrypt. # # URL to ACME directory acme_url: https://acme-v02.api.letsencrypt.org/directory # Email to register with ACME provider acme_email: "" # Domain name to request a TLS certificate for: tls_letsencrypt_hostname: "" # Path to store certificates and metadata needed by # letsencrypt # For production: tls_letsencrypt_cache_dir: /etc/headscale/cache # Type of ACME challenge to use, currently supported types: # HTTP-01 or TLS-ALPN-01 # See [docs/tls.md](docs/tls.md) for more information tls_letsencrypt_challenge_type: TLS-ALPN-01 # When HTTP-01 challenge is chosen, letsencrypt must set up a # verification endpoint, and it will be listening on: # :http = port 80 tls_letsencrypt_listen: ":http" ## Use already defined certificates: tls_cert_path: "/etc/caddy/certificates/acme-v02.api.letsencrypt.org-directory/hs.<domain>.dev/hs.<domain>.dev.crt" tls_key_path: "/etc/caddy/certificates/acme-v02.api.letsencrypt.org-directory/hs.<domain>dev/hs.<domain>.dev.key" log: # Output formatting for logs: text or json format: text level: info # Path to a file containing ACL policies. # ACLs can be defined as YAML or HUJSON. # https://tailscale.com/kb/1018/acls/ acl_policy_path: "" ## DNS # # headscale supports Tailscale's DNS configuration and MagicDNS. # Please have a look to their KB to better understand the concepts: # # - https://tailscale.com/kb/1054/dns/ # - https://tailscale.com/kb/1081/magicdns/ # - https://tailscale.com/blog/2021-09-private-dns-with-magicdns/ # dns_config: # Whether to prefer using Headscale provided DNS or use local. override_local_dns: true # List of DNS servers to expose to clients. nameservers: - 100.64.0.1 # NextDNS (see https://tailscale.com/kb/1218/nextdns/). # "abc123" is example NextDNS ID, replace with yours. # # With metadata sharing: # nameservers: # - https://dns.nextdns.io/abc123 # # Without metadata sharing: # nameservers: # - 2a07:a8c0::ab:c123 # - 2a07:a8c1::ab:c123 # Split DNS (see https://tailscale.com/kb/1054/dns/), # list of search domains and the DNS to query for each one. # # restricted_nameservers: # foo.bar.com: # - 1.1.1.1 # darp.headscale.net: # - 1.1.1.1 # - 8.8.8.8 # Search domains to inject. domains: [] # Extra DNS records # so far only A-records are supported (on the tailscale side) # See https://github.com/juanfont/headscale/blob/main/docs/dns-records.md#Limitations # extra_records: # - name: "grafana.myvpn.example.com" # type: "A" # value: "100.64.0.3" # # # you can also put it in one line # - { name: "prometheus.myvpn.example.com", type: "A", value: "100.64.0.3" } # Whether to use [MagicDNS](https://tailscale.com/kb/1081/magicdns/). # Only works if there is at least a nameserver defined. magic_dns: true # Defines the base domain to create the hostnames for MagicDNS. # `base_domain` must be a FQDNs, without the trailing dot. # The FQDN of the hosts will be # `hostname.user.base_domain` (e.g., _myhost.myuser.example.com_). base_domain: hs.<domain>.dev # Unix socket used for the CLI to connect without authentication # Note: for production you will want to set this to something like: unix_socket: /etc/headscale/headscale.sock unix_socket_permission: "0770" # # headscale supports experimental OpenID connect support, # it is still being tested and might have some bugs, please # help us test it. # OpenID Connect # oidc: # only_start_if_oidc_is_available: true # issuer: "https://your-oidc.issuer.com/path" # client_id: "your-oidc-client-id" # client_secret: "your-oidc-client-secret" # # Alternatively, set `client_secret_path` to read the secret from the file. # # It resolves environment variables, making integration to systemd's # # `LoadCredential` straightforward: # client_secret_path: "${CREDENTIALS_DIRECTORY}/oidc_client_secret" # # client_secret and client_secret_path are mutually exclusive. # # # The amount of time from a node is authenticated with OpenID until it # # expires and needs to reauthenticate. # # Setting the value to "0" will mean no expiry. # expiry: 180d # # # Use the expiry from the token received from OpenID when the user logged # # in, this will typically lead to frequent need to reauthenticate and should # # only been enabled if you know what you are doing. # # Note: enabling this will cause `oidc.expiry` to be ignored. # use_expiry_from_token: false # # # Customize the scopes used in the OIDC flow, defaults to "openid", "profile" and "email" and add custom query # # parameters to the Authorize Endpoint request. Scopes default to "openid", "profile" and "email". # # scope: ["openid", "profile", "email", "custom"] # extra_params: # domain_hint: example.com # # # List allowed principal domains and/or users. If an authenticated user's domain is not in this list, the # # authentication request will be rejected. # # allowed_domains: # - example.com # # Note: Groups from keycloak have a leading '/' # allowed_groups: # - /headscale # allowed_users: # - alice@example.com # # # If `strip_email_domain` is set to `true`, the domain part of the username email address will be removed. # # This will transform `first-name.last-name@example.com` to the user `first-name.last-name` # # If `strip_email_domain` is set to `false` the domain part will NOT be removed resulting to the following # user: `first-name.last-name.example.com` # # strip_email_domain: true # Logtail configuration # Logtail is Tailscales logging and auditing infrastructure, it allows the control panel # to instruct tailscale nodes to log their activity to a remote server. logtail: # Enable logtail for this headscales clients. # As there is currently no support for overriding the log server in headscale, this is # disabled by default. Enabling this will make your clients send logs to Tailscale Inc. enabled: false # Enabling this option makes devices prefer a random port for WireGuard traffic over the # default static port 41641. This option is intended as a workaround for some buggy # firewall devices. See https://tailscale.com/kb/1181/firewalls/ for more information. randomize_client_port: false ``` Caddy file (excerpt): ``` https://hs.<domain>.dev { reverse_proxy /web* https://headscale-ui { transport http { tls_insecure_skip_verify } } reverse_proxy * http://headscale:8080 } ```
adam added the bug label 2025-12-29 02:23:01 +01:00
adam closed this issue 2025-12-29 02:23:01 +01:00
Author
Owner

@kradalby commented on GitHub (Sep 12, 2024):

This sounds like your machine or container is missing CA root certs, try to mount them from the OS into the container.

We dont officially support containers, so I will close this one, if this solves your issue, please contribute to the docker docs.

@kradalby commented on GitHub (Sep 12, 2024): This sounds like your machine or container is missing CA root certs, try to mount them from the OS into the container. We dont officially support containers, so I will close this one, if this solves your issue, please contribute to the docker docs.
Sign in to join this conversation.
1 Participants
Notifications
Due Date
No due date set.
Dependencies

No dependencies set.

Reference: starred/headscale#731